Bone marrow cells migrate to tumors and can slow their growth

October 7, 2011

Bone marrow-derived cells (BMDCs) participate in the growth and spread of tumors of the breast, brain, lung, and stomach. To examine the role of BMDCs, researchers developed a mouse model that could be used to track the migration of these cells while tumors formed and expanded. Their results, published in the November issue of The American Journal of Pathology, strongly suggest that more effective cancer treatments may be developed by exploiting the mechanism by which bone marrow cells migrate to tumors and retard their proliferation.

"Our results provide an excellent in vivo experimental model where the temporal dynamics of tumor-infiltrating BMDCs may be monitored in an immunocompetent host and novel therapies targeting BMDCs for the inhibition of may be investigated," commented lead investigator Wafik S. El-Deiry, MD, PhD, Professor and Chief, Hematology/Oncology Division at the Penn State Hershey Medical Center and Associate Director for Translational Research at the Penn State Hershey Cancer Institute. "In the future, it may be possible to use specific identified tumor-infiltrating BMDCs to deliver therapeutic cargo."

A first group of mice expressing a fluorescence gene served as donors of the . A second group of mice, whose marrow had been destroyed by radiation, were injected with the donated fluorescent bone marrow. The transplanted bone marrow cells were allowed to proliferate for 8 weeks. Then, were injected into the same mice and tumors formed over the next 3 weeks.

Monitoring tumor growth by optical imaging, researchers found that the tumors contained numerous types of BMDCs. Notably they also found that is reduced in animals that received the , compared with untransplanted host mice.

According to the authors, cancer has long been viewed as a disease in which transformed cells grow and invade tissues. However, they believe that it is becoming clear that cancer is a more complex disease in a heterogeneous microenvironment where many cellular interactions are occurring in the malignant tissue.

"This type of mouse model allows scientists to actually see in living color the complicated relationships and interplay between the…tumor's own cells and the immune system cells within the host…" said El-Deiry, who is also an American Cancer Society Research Professor. He added: "this ongoing war on cancer within this tumor microenvironment has surprising twists and turns." El-Deiry and his colleagues hope to steer patient outcomes "with additional treatments that can help [them] overcome the cancer."

Explore further: Bone marrow transplantation may increase cancer resistance in patients

More information: The article is "High-Resolution Imaging and Antitumor Effects of GFP+ Bone Marrow-Derived Cells Homing to Syngeneic Mouse Colon Tumors" by Niklas K. Finnberg, Lori S. Hart, Nathan G. Dolloff, Zachary B. Rodgers, David T. Dicker and Wafik S. El-Deiry (doi: 10.1016/j.ajpath.2011.07.028). It will appear in The American Journal of Pathology, Volume 179, Issue 5 (November 2011)

Related Stories

Bone marrow transplantation may increase cancer resistance in patients

August 24, 2011
Bone marrow transplantation with genetically modified cells may prolong the period of cancer-free survival, suggests a study led by Dr. Vivek Rangnekar, associate director of translational research for the Markey Cancer Center ...

Inhibiting key enzymes kills difficult tumor cells in mice

August 15, 2011
Tumors that do not respond to chemotherapy are the target of a cancer therapy that prevents the function of two enzymes in mouse tumor cells, according to Pennsylvania medical researchers.

Recommended for you

Researchers discover specific tumor environment that triggers cells to metastasize

November 21, 2017
A team of bioengineers and bioinformaticians at the University of California San Diego have discovered how the environment surrounding a tumor can trigger metastatic behavior in cancer cells. Specifically, when tumor cells ...

New study points the way to therapy for rare cancer that targets the young

November 21, 2017
After years of rigorous research, a team of scientists has identified the genetic engine that drives a rare form of liver cancer. The findings offer prime targets for drugs to treat the usually lethal disease, fibrolamellar ...

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.