Embryonic signal drives pancreatic cancer and offers a way to kill it

November 3, 2011

Pancreatic cancer is a particularly challenging one to beat; it has a tendency to spread and harbors cancer stem cells that stubbornly resist conventional approaches to therapy. Now, researchers reporting in the November issue of Cell Stem Cell, a Cell Press publication, have evidence to suggest there is a way to kill off those cancer stem cells. The target is a self-renewal pathway known for its role not in cancer but in embryonic stem cells.

"I don't think the cancer stem cells have any direct link to , rather they are using this developmental pathway for their uncontrolled self-renewal capacity," said Christopher Heeschen of the Spanish National Cancer Research Centre in Madrid. "This pathway is completely inactive in adult tissue. We've checked many tissues and there is zero – no detectable expression at all."

The so-called Nodal/Activin pathway's embryonic ties and absence from other tissues present a real opportunity. It suggests you could the molecular pathway without harming other adult cells. Heeschen's team has now shown that approach to therapy does seem to work in mice.

They first demonstrated the important role of the Nodal/Activin pathway in cancer stem cells derived from human pancreatic cancer. When that signal was blocked, normally resistant pancreatic cancer stem cells became sensitive to chemotherapy.

The researchers then moved on to experiments in mice with established tumors seeded from human cancer cells. Treatment of those animals with the pathway inhibitor plus standard chemotherapy eliminated those stem cells.

"The dual combination therapy worked strikingly well," Heeschen said. "The mice responded with 100 percent survival after 100 days." That's compared to mice not receiving the therapy, which bore large tumors and died within 40 days of implantation.

That two-part treatment wasn't enough to tackle when intact tumor tissue was implanted into mice as opposed to just cancer cells, the researchers found. Heeschen says that's because those cells were nestled within a supportive "stroma." That protective tissue delivered the Activin signal and prevented the drug combination from reaching the cells.

To get around that, Heeschen and his colleagues added a third ingredient to therapy, an inhibitor intended to target the stroma. The three-pronged approach translated into long-term, progression-free survival for the mice.

Interestingly, Heeschen says the animals' tumors didn't show signs of shrinking even as they were defeated. "They were more or less dead . They were senescent with no cancer stem cells – just sitting there," he said.

Those tissues apparently had no ability to form new tumors. The findings suggest that tumor regression isn't always the key thing to look for. It also shows that drugs designed to target cancer stem cells alone are promising, but only in combination with other drugs.

"The concept that you can hit cancer stem cells and tumors will melt away must be abandoned," Heeschen said. "You have to treat the entire cancer - the stroma, cancer and differentiated cells - as a complex. "

Heeschen says there are hints that this embryonic might have important roles in other forms of cancer, including breast, lung and colorectal cancers. That's something they will now test in further studies.

Explore further: Oncolytic viruses effectively target and kill pancreatic cancer stem cells

Related Stories

Oncolytic viruses effectively target and kill pancreatic cancer stem cells

May 9, 2011
Oncolytic viruses quickly infect and kill cancer stem cells, which may provide a treatment for tumors that are resistant to conventional chemotherapy and radiation, particularly pancreatic cancer, according to new research ...

To combat deadly brain cancer, target the stem cells

July 7, 2011
Researchers have uncovered a new target that could stop the growth of glioblastoma, a deadly form of brain cancer. In the July 8th issue of the journal Cell, a Cell Press publication, a new study identifies an enzyme found ...

Recommended for you

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.