Improved memory efficiency seen after aerobic exercise in fibromyalgia patients

November 13, 2011

Areas of the brain responsible for pain processing and cognitive performance changed in fibromyalgia patients who exercised following a medication holiday, say researchers from Georgetown University Medical Center. They say the changes indicate brain functioning is more streamlined after an exercise intervention because less of the brain's resources is devoted to processing bothersome fibromyalgia perceptions such as pain.

The study, presented at the Society of Neuroscience's annual meeting, Neuroscience 2011, used functional to assess changes in the brain. Researchers observed a decrease in in areas responsible for memory and pain control after fibromyalgia patients took part in an .

"The decreased brain activity we see in the area of cognition suggests that the brain is working more efficiently," explains Brian Walitt, M.D. M.P.H., director of the Fibromyalgia Evaluation and Research Center at Georgetown University Medical Center and senior study author. "We also see less brain activity in areas responsible for pain processing which might be aiding that efficiency." Walitt cautions that more research needs to be conducted before suggesting a change in clinical care for fibromyalgia.

Fibromyalgia is a medical disorder characterized by widespread pain, fatigue, disordered sleep, and . It is regarded as an interoceptive disorder in that it has no apparent cause, Walitt says. "In conditions like this, the body perceives something by mistake." The pain is not psychosomatic, but is real and likely produced by the , he says.

To that end, the research team used fMRI to "provide a definitive measure of , so that we can more scientifically measure the effect of exercise," says Manish Khatiwada, M.S., who will be presenting the results. "This is a novel approach to the study of fibromyalgia." (Khatiwada is working in the laboratory of co-author John VanMeter, Ph.D., director of the Center for Functional and Molecular Imaging.)

For this study, the researchers enrolled eighteen women with fibromyalgia, and gave them a baseline fMRI to assess working memory and questionnaires about their well-being and pain while they were on medication. They then were told not to use their medications for a "washout" period, and had a second fMRI and memory testing. After six weeks, they had another assessment. The final scan was taken after the volunteers engaged in a six-week period of exercise, which involved three 30-minute sessions of aerobic exercise each week with a trainer.

Memory and pain typically worsen in patients after stopping their medication — which was the experience of patients in this study. After six weeks of exercise, however, patients reported an improvement in overall well-being. However, their performance in the memory task did not change significantly when compared to their baseline study measurements. Despite a change in memory test performance, brain activity in the memory task and pain processing areas of the brain decreased.

"What we see is a less interference by activity which could be contributing to the decrease in activity in the memory section. Basically, the brain is using less energy for the same task," Walitt says.

Explore further: Chronic Fatigue Syndrome challenges patients, medical professionals

More information: Presentation Title: Effect of aerobic exercise on working memory in fibromyalgia Location: Hall A-C

Abstract:
Introduction: Fibromyalgia (FM) is a disorder characterized by wide spread musculoskeletal pain and diffuse tenderness at multiple tender points that disproportionably affects women (Bartels 2009, Wolfe 1990). Previous studies have shown impairments in working memory, and long-term verbal memory in FM (Dick 2002, Park DC 2001). Aerobic exercise has been shown to improve the cognitive function, tenderness and disability of FM (Goldenberg 2008, Nichols 1994). The goal of this investigation was to determine the effect of aerobic exercise on working memory in FM using functional magnetic resonance Imaging (fMRI).
Methods: Nine female FM subjects (8 right handed, 1 left handed; age 45.8±10.60 years) who met the 1990 American College of Rheumatology criteria for FM were included in this study. The study consisted of 4 visits: 1) Baseline: on current FM medications, 2) Washout: off all FM medications for 3 half-lives, 3) No Treatment: 6 weeks after stopping FM medications, and 4) Exercise: after a 6 weeklong aerobic exercise intervention. At each visit an N-Back fMRI task (serial letter recognition with 0 and 2 back) was collected. Data was acquired on a Siemens 3T Tim Trio: TR/TE=2500/30ms, effective resolution 3.2mm3, and 47 slices. SPM5 was used to realign, spatially normalize, and smooth the data. A full factorial random-effects model was used to analyze changes in neuronal activity across visits using a model related to changes in their patient global impression change (PGIC) with an initial drop followed by steady improvement.
Results: The second-level model related to PGIC change across visits of the 2back > 0back contrast revealed increased activation in task-related areas: L Superior Medial Frontal, L Dorsal Lateral Prefrontal, R Mid Frontal, R Supplementary Motor, L Thalamus, L Caudate, L Inferior Parietal, Bi Superior Parietal (Fig 1 p<0.05 uncorrected).
Conclusions: Our results indicate that as the patients discontinue their current medication treatment and transition into the exercise treatment their subjective rating of change in pain initially increases and then decreases. Neuronal activity in areas recruited for an Nback working memory task follow an inverse pattern with an initial drop following medication cessation that increases on subsequent visits. These results are suggestive of the effect exercise on not only self report of global change in pain sensation in FM but also improvement in the network of cortical areas recruited in working memory. Thus, exercise may have benefit in both reducing FM symptoms and improving cognitive capacity.

Related Stories

Chronic Fatigue Syndrome challenges patients, medical professionals

July 1, 2011
(Medical Xpress) -- We all get a little tuckered out now and then, but when that tired feeling doesn’t go away with what’s considered normal rest and relaxation there are a myriad of medical conditions that can ...

Recommended for you

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

Prematurity leaves distinctive molecular signature in infants' cerebellum

August 15, 2017
Premature birth, which affects one in 10 U.S. babies, is associated with altered metabolite profiles in the infants' cerebellum, the part of the brain that controls coordination and balance, a team led by Children's National ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.