Regeneration after a stroke requires intact communication channels between the two halves of the brain

November 21, 2011
Stroke damage (white circle) can destroy the communication channels within the brain. This depiction of stretches of fibres show that the damage can also affect fibres between the hemispheres (red) which whither in the course of the illness, thus hindering the exchange of information between the hemispheres. Credit: MPI for Neurological Research

(Medical Xpress) -- The structure of the corpus callosum, a thick band of nerve fibres that connects the two halves of the brain with each other and in this way enables the rapid exchange of information between the left and right hemispheres, plays an important role in the regaining of motor skills following a stroke. A study currently published in the journal Human Brain Mapping has shown that in stroke patients with particularly severely impaired hand movement, this communication channel between the two brain hemispheres in particular was badly damaged.

In order to relate and anatomical structure with each other, in this study the scientists from the Max Planck Institute for Neurological Research and the Department of Neurology at the University Hospital of Cologne combined two imaging methods. They asked to make a simple tapping movement using the hand affected by the stroke and recorded their brain activity using . The data obtained in this way were then compared with data from healthy subjects. As expected from previous test results, compared with the control group, the stroke patients recorded a lower tapping speed and increased on both sides of the brain. “The increased activity in the healthy brain hemisphere, in particular, points to the impaired processing of motor programs between the two brain hemispheres,” explains Christian Grefkes, head of the research study.

In order to demonstrate the structural connection between brain areas, the Cologne researchers used diffusion-based magnetic resonance imaging (dMRI), which can be used to reconstruct longer stretches of nerve fibres. dMRI is based on the principle that cell elements, such as the membrane or extensions, inhibit the spread of water molecules thereby preventing them from diffusing randomly in all directions. Consequently, parallel can be clearly identified using dMRI. Compared to the healthy control group, the stroke patients had lower diffusion values in the corpus callosum region. This would indicate that this interhemispheric communications connection was damaged by the stroke. The most significant deviations from the values of the control group were observed in patients with more severe motor defects and increased activity in the healthy brain hemisphere.

Therefore, in addition to cell death in the actual stroke area, damage to a very distant connection structure plays a crucial role in the inability of stroke patients to fully regain their original motor capacities. “This is why, we are currently examining whether we can regenerate the communication between the through early and regular stimulation treatment. Our long-term aim is to improve motor deficits in stroke patients,” says Grefkes.

Explore further: Electrical stimulation to the brain makes learning easier

More information: Ling E. Wang, et al. Degeneration of corpus callosum and recovery of motor function after stroke: A multimodal magnetic resonance imaging study, Human Brain Mapping, online publication, 22, Oct. 2011 | DOI: 10.1002/hbm.21417

Related Stories

Electrical stimulation to the brain makes learning easier

September 21, 2011
(Medical Xpress) -- A new study presented at the British Science Festival by Professor Heidi Johansen-Berg from the University of Oxford shows that the application of small electrical currents to specific parts of the brain ...

Neuroscientists find normal brain communication in people who lack connections between right, left hemispheres

October 19, 2011
(Medical Xpress) -- Like a bridge that spans a river to connect two major metropolises, the corpus callosum is the main conduit for information flowing between the left and right hemispheres of our brains. Now, neuroscientists ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.