New 'Achilles' heel' in breast cancer: tumor cell mitochondria

December 1, 2011

Researchers at the Kimmel Cancer Center at Jefferson have identified cancer cell mitochondria as the unsuspecting powerhouse and "Achilles' heel" of tumor growth, opening up the door for new therapeutic targets in breast cancer and other tumor types.

Reporting in the online Dec.1 issue of Cell Cycle, Michael P. Lisanti, M.D., Ph.D., Professor and Chair of & Regenerative Medicine at Thomas Jefferson University, and colleagues provide the first in vivo evidence that breast cancer cells perform enhanced oxidative phosphorylation (OXPHOS) to produce high amounts of energy.

"We and others have now shown that cancer is a 'parasitic disease' that steals energy from the host -- your body," Dr. Lisanti said, "but this is the first time we've shown in human breast tissue that cancer cell mitochondria are calling the shots and could ultimately be manipulated in our favor."

Mitochondria are the energy-producing power-plants in normal cells. However, cancer cells have amplified this energy-producing mechanism, with at least five times as much energy-producing capacity, compared with normal cells. Simply put, mitochondria are the powerhouse of cancer cells and they fuel and metastasis.

The research presented in the study further supports the idea that blocking this activity with a mitochondrial inhibitor -- for instance, an off-patent generic drug used to treat diabetes known as Metformin -- can reverse tumor growth and chemotherapy resistance. This new concept could radically change how we treat cancer patients, and stimulate new metabolic strategies for cancer prevention and therapy.

Investigating the Powerhouse

Whether cancer cells have functional mitochondria has been a hotly debated topic for the past 85 years. It was argued that cancer cells don't use mitochondria, but instead use glycolysis exclusively; this is known as the Warburg Effect. But researchers at the Jefferson's KCC have shown that this inefficient method of producing energy actually takes place in the surrounding host stromal cells, rather then in epithelial cancer cells. This process then provides abundant mitochondrial fuel for cancer cells. They've coined this the "Reverse Warburg Effect," the opposite or reverse of the existing paradigm.

To study mitochondria's role directly, the researchers, including co-author and collaborator Federica Sotgia, Assistant Professor in the Department of Cancer Biology, looked at mitochondrial function using COX activity staining in human breast cancer samples. Previously, this simple stain was only applied to muscle tissue, a mitochondrial-rich tissue.

Researchers found that human breast cancer epithelial cells showed amplified levels of mitochondrial activity. In contrast, adjacent stromal tissues showed little or no mitochondrial oxidative capacity, consistent with the new paradigm. These findings were further validated using a computer-based informatics approach with gene profiles from over 2,000 human samples.

It is now clear that cancer cell mitochondria play a key role in "parasitic" energy transfer between normal fibroblasts and cancer cells, fueling tumor growth and metastasis.

"We have presented new evidence that cancer cell mitochondria are at the heart of tumor cell growth and metastasis," Dr. Lisanti said. "Metabolically, the drug Metformin prevents cancer cells from using their mitochondria, induces glycolysis and lactate production, and shifts cancer cells toward the conventional 'Warburg Effect'. This effectively starves the cancer cells to death".

Personalized Treatment

Although COX mitochondrial activity staining had never been applied to cancer tissues, it could now be used routinely to distinguish cancer cells from normal cells, and to establish negative margins during cancer surgery. And this is a very cost-effective test, since it has been used routinely for muscle-tissue for over 50 years, but not for cancer diagnosis.

What's more, it appears that upregulation of mitochondrial activity is a common feature of human breast , and is associated with both estrogen receptor positive (ER+) and negative (ER-) disease. Outcome analysis indicated that this mitochondrial gene signature is also associated with an increased risk of tumor cell metastasis, particularly in ER-negative (ER-) patients.

"Mitochondria are the 'Achilles' heel' of tumor cells," Dr. Lisanti said. "And we believe that targeting mitochondrial metabolism has broad implications for both cancer diagnostics and therapeutics, and could be exploited in the pursuit of personalized medicine."

Explore further: Researchers unlock key to personalized cancer medicine using tumor metabolism

Related Stories

Researchers unlock key to personalized cancer medicine using tumor metabolism

April 15, 2011
Identifying gene mutations in cancer patients to predict clinical outcome has been the cornerstone of cancer research for nearly three decades, but now researchers at the Kimmel Cancer Center at Jefferson have invented a ...

Leukemia drug reverses tamoxifen-resistance in breast cancer cells

August 1, 2011
Taking a leukemia chemotherapy drug may help breast cancer patients who don't respond to tamoxifen overcome resistance to the widely-used drug, new research from the Kimmel Cancer Center at Jefferson suggests.

Cancer cells accelerate aging and inflammation in the body to drive tumor growth

May 26, 2011
Researchers at the Kimmel Cancer Center at Jefferson have shed new light on the longstanding conundrum about what makes a tumor grow—and how to make it stop. Interestingly, cancer cells accelerate the aging of nearby ...

Recommended for you

Researchers identify gene variants linked to a high-risk children's cancer

September 25, 2017
Pediatric researchers investigating the childhood cancer neuroblastoma have identified common gene variants that raise the risk of an aggressive form of that disease. The discovery may assist doctors in better diagnosing ...

Prostaglandin E1 inhibits leukemia stem cells

September 25, 2017
Two drugs, already approved for safe use in people, may be able to improve therapy for chronic myeloid leukemia (CML), a blood cancer that affects myeloid cells, according to results from a University of Iowa study in mice.

Cancer vaccines need to target T cells that can persist in the long fight against cancer

September 25, 2017
Cancer vaccines may need to better target T cells that can hold up to the long fight against cancer, scientists report.

Lung cancer treatment could be having negative health effect on hearts

September 25, 2017
Radiotherapy treatment for lung cancer could have a negative effect on the health of your heart new research has found.

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.