Why bigger is better when it comes to our brain and memory

December 21, 2011

The hippocampus is an important brain structure for recollection memory, the type of memory we use for detailed reliving of past events. Now, new research published by Cell Press in the December 22 issue of the journal Neuron reveals characteristics of the human hippocampus that allow scientists to use anatomical brain scans to form predictions about an individual's recollection ability. The new research helps to explain why this relationship has been hard to find in the past and provides evidence for a possible underlying mechanism.

The hippocampus, a deep named for its curving seahorse shape, can be divided into anterior and posterior portions. Although research has generally linked smaller hippocampi with worse recollection in neuropsychological patients and during aging, this relationship has not held up among healthy . "There is some evidence that extensive acquisition leads to enlargement of the posterior hippocampus and a decrease in the anterior hippocampus," explains lead study author, Dr. Jordan Poppenk who conducted the study at Baycrest's Rotman Research Institute. "This suggested to us that the crucial predictor of individual differences in recollection ability might not be the overall size of the hippocampus but the separate contributions of the posterior and anterior segments of the hippocampus."

Dr. Poppenk and coauthor Dr. Morris Moscovitch analyzed high-resolution brain scans of healthy adults who had participated in recollection memory tests. Better recollection was associated with a larger posterior hippocampus and a smaller anterior hippocampus. The overall size of the hippocampus did not predict recollection, as larger posterior hippocampi were offset by smaller anterior hippocampi. The researchers went on to show that the link between the posterior hippocampus and recollection depended on interactions with other parts of the brain between the times that memories were learned and retrieved, particularly regions involved in perception which form the basis of recollected experience.

"Our results show for the first time that the size of the posterior hippocampus, especially when expressed as a ratio to the size of the anterior hippocampus, reliably predicts recollection in healthy adults. This finding explains the longstanding failure to correlate the overall size of the hippocampus with memory," concludes Dr. Poppenk. "We also provide evidence that it is the functional connections, possibly related to memory consolidation, between the posterior hippocampus and other that may underlie enhanced memory recollection."

Explore further: Hippocampus plays bigger memory role than previously thought

Related Stories

Hippocampus plays bigger memory role than previously thought

November 1, 2011
Human memory has historically defied precise scientific description, its biological functions broadly but imperfectly defined in psychological terms. In a pair of papers published in the November 2 issue of The Journal of ...

Changes in London taxi drivers' brains driven by acquiring 'the Knowledge', study shows

December 8, 2011
Acquiring 'the Knowledge' – the complex layout of central London's 25,000 streets and thousands of places of interest – causes structural changes in the brain and changes to memory in the capital's taxi drivers, ...

Small hippocampus associated with depression in the elderly: Risk factor or shrinkage?

July 19, 2011
Imaging studies have repeatedly found that people with depression have smaller hippocampal volumes than healthy individuals. The hippocampus is a brain region involved in learning and memory, spatial navigation, and the evaluation ...

Recommended for you

Researchers demonstrate 'mind-reading' brain-decoding tech

October 23, 2017
Researchers have demonstrated how to decode what the human brain is seeing by using artificial intelligence to interpret fMRI scans from people watching videos, representing a sort of mind-reading technology.

Rhythm of memory: Inhibited neurons set the tempo for memory processes

October 23, 2017
The more we know about the billions of nerve cells in the brain, the less their interaction appears spontaneous and random. The harmony underlying the processing of memory contents has been revealed by Prof. Dr. Marlene Bartos' ...

Research revises our knowledge of how the brain learns to fear

October 23, 2017
Our brains wire themselves up during development according to a series of remarkable genetic programs that have evolved over millions of years. But so much of our behavior is the product of things we learn only after we emerge ...

High-speed locomotion neurons found in the brainstem

October 23, 2017
Think of taking a casual stroll on a sunny Sunday afternoon or running at full speed to catch a bus for work on Monday morning as two extremes. Both forms of locomotion entail a perfect interplay between arms and legs, yet ...

Scientists use supercomputer to search for "memory molecules"

October 23, 2017
Until now, searching for genes related to memory capacity has been comparable to seeking out the proverbial "needle in a haystack." Scientists at the University of Basel made use of the CSCS supercomputer Piz Daint to discover ...

Researchers create tool to measure, control protein aggregation

October 22, 2017
A common thread ties seemingly unlinked disorders like Alzheimer's disease and type II diabetes together. This thread is known as protein aggregation and happens when proteins clump together. These complexes are a hallmark ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.