Appetite accomplice: Ghrelin receptor alters dopamine signaling

January 25, 2012
GHSR1a allosterically modifies DRD2 signaling via a heteromer. Credit: Roy G. Smith, The Scripps Research Institute

New research reveals a fascinating and unexpected molecular partnership within the brain neurons that regulate appetite. The study, published by Cell Press in the January 26 issue of the journal Neuron, resolves a paradox regarding a receptor without its hormone and may lead to more specific therapeutic interventions for obesity and disorders of dopamine signaling.

Ghrelin is an appetite-stimulating hormone produced by the stomach. Although the ghrelin receptor (GHSR1a) is broadly distributed in the brain, ghrelin itself is nearly undetectable there. This intriguing paradox was investigated by Dr. Roy G. Smith, Dr. Andras Kern, and colleagues from The Scripps Research Institute in Florida. "We identified subsets of neurons in the brain that express both GHSR1a and the dopamine receptor subtype-2 (DRD2)," explains Dr. Smith. "Dopamine signaling in the is linked with feeding behavior, and mutations in DRD2 that attenuate dopamine signaling are associated with obesity in humans. We speculated that expression of both receptors in the same neurons might lead to interactions between GHSR1a and DRD2 that modify dopamine signaling."

The researchers showed that when GHSR1a and DRD2 were coexpressed, the receptors physically interacted with one another. Further, the GHSR1a:DRD2 complex was present in native that regulate appetite. When mice were treated with a molecule (cabergoline) that selectively activates DRD2, they exhibited anorexia. Interestingly, the cabergoline-stimulated anorexia did not require but was dependent on GHSR1a and the GHSR1a:DRD2 interaction. These findings suggest that in neurons expressing both GHSR1a and DRD2, GHSR1a alters classical DRD2 dopamine signaling.

"Perhaps most importantly, we showed that a GHSR1a-selective antagonist blocks dopamine signaling in neurons with both DRD2 and GHSR1a, which allows neuronal selective fine-tuning of dopamine signaling because neurons expressing DRD2 alone will be unaffected," concludes Dr. Smith. "This provides exciting opportunities for designing next-generation therapeutics with fewer side effects for both obesity and psychiatric disorders associated with abnormal dopamine signaling."

Explore further: Feeding hormone ghrelin modulates ability of rewarding food to evoke dopamine release

More information: Kern et al.: “Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism.” Neuron, January 26, 2012.

Related Stories

Feeding hormone ghrelin modulates ability of rewarding food to evoke dopamine release

July 12, 2011
New research findings to be presented at the upcoming annual meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, finds that ...

Intestinal protein may have role in ADHD, other neurological disorders

August 11, 2011
A biochemical pathway long associated with diarrhea and intestinal function may provide a new therapeutic target for treating ADHD (Attention Deficit Hyperactivity Disorder) other neuropsychiatric disorders, according to ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

Researchers show how particular fear memories can be erased

August 17, 2017
Researchers at the University of California, Riverside have devised a method to selectively erase particular fear memories by weakening the connections between the nerve cells (neurons) involved in forming these memories.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.