Evolved, mutated gene module linked to Joubert syndrome

January 26, 2012
This image using an electron microscope shows a cilium growing from a neuron. Credit: Gleeson lab, UC San Diego

A team led by researchers at the University of California, San Diego School of Medicine reports that newly discovered mutations in an evolved assembly of genes cause Joubert syndrome, a form of syndromic autism.

The findings are published in the January 26 online issue of .

Joubert syndrome is a rare, recessive brain condition characterized by malformation or underdevelopment of the and brainstem. The disease is due specifically to alterations in cellular primary cilia – antenna-like structures found on most cells. The consequence is a range of distinct physical and cognitive disabilities, including poor muscle control, and mental retardation. Up to 40 percent of Joubert syndrome patients meet clinical criteria for , as well as other neurocognitive disorders, so it is considered a syndromic form of autism.

The cause or causes of Joubert syndrome are not well-understood. Researchers looked at in the TMEM216 gene, which had previously been linked to the syndrome. However, only half of the expected Joubert syndrome patients exhibit TMEM216 gene mutations; the other half did not. Using genomic sequencing, the research team, led by Joseph G. Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego, broadened their inquiry and discovered a second culprit: mutations in a neighboring gene called TMEM138.

"It is extraordinarily rare for two adjacent to cause the same human disease," said Gleeson. "The mystery that emerged from this was whether these two adjacent, non-duplicated genes causing indistinguishable disease have functional connections at the gene or protein level."

Through evolutionary analysis, the scientists concluded that the two TMEM genes became joined end-to-end approximately 260 million years ago, about the time some amphibians began transitioning into land-based reptiles. The connected genes evolved in tandem, becoming regulated by the same transcription factors.

"Prior to this transition, the two genes had wildly different expression levels," said Jeong Ho Lee, MD, PhD, and first author of the study. "Following this transition, they became tightly co-regulated. Moreover, we found that the two encoded proteins coordinate delivery of factors key for cilia assembly."

Gleeson said the findings suggest the human genome has evolved to take advantage of fortuitous ancestral events like gene translocations to better coordinate gene expression by assembling into specific modules. When these modules are disrupted, however, neurodevelopmental diseases may result.

Explore further: New gene that causes intellectual disability discovered

Related Stories

New gene that causes intellectual disability discovered

May 12, 2011
A new study involving Canada's Centre for Addiction and Mental Health (CAMH) has found a gene connected with a type of intellectual disability called Joubert syndrome.

Researchers describe genetic basis of rare human diseases

July 8, 2011
Researchers at the University of California, San Francisco and in Michigan, North Carolina and Spain have discovered how genetic mutations cause a number of rare human diseases, which include Meckel syndrome, Joubert syndrome ...

Recommended for you

Potential new autism drug shows promise in mice

November 14, 2017
Scientists have performed a successful test of a possible new drug in a mouse model of an autism disorder. The candidate drug, called NitroSynapsin, largely corrected electrical, behavioral and brain abnormalities in the ...

Relational factors in music therapy can contribute to positive outcome for children with autism

November 6, 2017
It might not surprise that good relationships create good outcomes, as meaningful relational experiences are crucial to all of us in our everyday life. However, the development of a relationship with a child with autism may ...

In autism, too many brain connections may be at root of condition

November 2, 2017
A defective gene linked to autism influences how neurons connect and communicate with each other in the brain, according to a study from Washington University School of Medicine in St. Louis. Rodents that lack the gene form ...

New autism study a "shocking wake-up call" for society, say academics

October 23, 2017
People who show characteristics of autism are more at risk of attempting suicide, according to a Coventry University study whose results are being presented to a United States federal advisory committee tomorrow.

Signaling pathway may be key to why autism is more common in boys

October 17, 2017
Researchers aiming to understand why autism spectrum disorders (ASD) are more common in boys have discovered differences in a brain signaling pathway involved in reward learning and motivation that make male mice more vulnerable ...

Whole genome sequencing identifies new genetic signature for autism

October 12, 2017
Autism has genetic roots, but most cases can't be explained by current genetic tests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.