Project to improve radiotherapy planning

January 30, 2012, University of Cambridge
Image-guided intensity modulated RT plan for a patient with a spinal tumour. The radiation dose is shaped away from the kidneys (yellow outlines) and the spinal nerve roots (inside the green outline). The colour wash represents radiation dose. Credit: Andy Parker

A collaborative project between physicists, oncologists and computer scientists at Oxford and Cambridge Universities, launched last month, will develop improved tools for the planning of high precision radiotherapy. Accel-RT will also help overcome time constraints that currently limit the use of complex radiotherapy treatment.

Radiation therapy (radiotherapy) is an essential part of and is used in the treatment of 40 per cent of all patients who are cured of their disease. All radiotherapy treatments work by the application of ionising radiation to in tumors. The released by this process damage the DNA of the exposed tissue, killing off the . By targeting the radiation to the tumor, the damage to surrounding healthy tissue is minimized.

Modern radiotherapy machines can now deliver highly targeted radiotherapy treatment. However, the use of high precision radiotherapy techniques is extremely demanding in terms of hours spent, from the physician who defines the tumor target and healthy tissues, to the physicist who has to calculate a plan of optimum beam angles and trajectories for the treatment, and the radiographer, who must ensure that the treatment is delivered accurately to the target every day during a six or seven week course of radiotherapy.

Accel-RT is an innovative partnership between , physicists and at the Universities of Cambridge and Oxford. Over the next three years the collaborators will develop software tools and processes that will speed up the process of planning of radiotherapy. Once completed, free software tools will be available to radiotherapy treatment centres. These tools will increase patient access to high precision radiotherapy by reducing the bottle-necks in the clinical workflow. The system will operate as a ‘virtual oncologist’, observing what the oncologist is treating and using novel search algorithms to recall similar cases from a clinical archive. Models of tissue structures will be used to help outline normal tissue automatically, as well as to track the movement of these structures during the course of radiotherapy treatment.

Accel-RT is being funded by the Science and Technologies Facilities Council (STFC) and will benefit from the support of Siemens Healthcare, a leading supplier of imaging technology and radiotherapy treatment devices throughout the world.

The key players in the project are established leaders in their fields. At the Cambridge of University, Dr Neil Burnet has been an ‘early adopter’ of novel radiotherapy technologies at Addenbrooke’s, from the commissioning of the first in-house 3D computerised treatment planning system, through to the evaluation of the TomoTherapy image guided intensity modulated radiotherapy system conducted for the Department of Health. At Oxford University, Professor Jim Davies and his team from the Computer Laboratory have experience in the handling of ‘smart’ data systems – using metadata elements to allow data to be searched and processed in more intuitive ways.

Professor Andy Parker and his team at the High Energy Physics group in Cambridge have extensive experience in the storage and handling of large quantities of image data, and the use of grid computing techniques to accelerate this process. “In essence, Accel-RT is helping to identify tumours and surrounding organs during the planning and delivery of treatment. Tracking the change in position and volume of these structures is a complex problem. To perform these calculations in real time for a single patient would require up to 16 Teraflops of processing power – approximately 100 times the power of a standard PC workstation,” said Professor Parker, who is Professor of High Energy Physics at the Cavendish Laboratory and Principal Investigator for Accel-RT.

Explore further: Radiotherapy after surgery halves breast cancer recurrence

More information: For more details about the project, and to register for project news emails, go to www.accelrt.org

Related Stories

Radiotherapy after surgery halves breast cancer recurrence

October 20, 2011
(Medical Xpress) -- Radiotherapy following surgery for breast cancer halves the chances of the cancer coming back over the next 10 years, a study led by Oxford University researchers has found.

Fewer, larger radiotherapy doses prove safe for prostate cancer patients

December 13, 2011
(Medical Xpress) -- Less overall radiotherapy, delivered in fewer but higher doses, is as safe as standard, lower doses for treating prostate cancer, according to new research published in the Lancet Oncology today (Tuesday).

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.