Breakthrough in the development of a diagnostic test for oesophageal cancer

February 8, 2012, Science and Technology Facilities Council

A team of scientists, led by the University of Liverpool, has made a major advance in the development of a diagnostic test for oesophageal cancer. The findings, achieved at STFC's ALICE accelerator facility, will lead to major improvements in the diagnosis, treatment and prognosis of the disease.

Oesophageal cancer is the ninth most common cancer in the world and around 8000 people are diagnosed every year in the UK. It is an extremely difficult cancer to diagnose and is highly aggressive. Patients often present when the is at an advanced stage, when surgical removal is no longer possible.

The aim of the research is to develop a by imaging tissue obtained by from patients with a precursor condition called Barrett's Oesophagus. Patients with Barrett's Oesophagus are more at risk of developing this form of cancer and are regularly monitored to detect changes in their condition. If are detected in these patients, they can undergo potentially without the need for because the tumours have been detected at a much earlier stage.

By using a unique and extremely intense source of (the InfraRed ) at the pioneering ALICE accelerator at STFC's Daresbury Laboratory, Professor Peter Weightman and his team have been able to image and carry out a blind study of historical endoscopic samples from patients with Barrett's Oesophagus and, by detecting changes that took place in the samples, have developed a diagnostic test for the disease.

Minister for Universities and Science David Willetts said: “It’s incredibly impressive that the UK’s leading physics research can bring benefits for our health and wellbeing, as well as telling us more about the world around us. This work has the potential to save lives and revolutionise the diagnosis and treatment of oesophageal cancer. It also demonstrates the value of the Government’s investment in the Daresbury Laboratory. I wish the researchers well in taking these findings through to clinical use.”

Professor Weightman of University of Liverpool said: "Early diagnosis is the most important factor for improving the prognosis for patients with oesophageal cancer. But it is extremely hard to diagnose accurately - a false negative test can be fatal, whereas a false positive means unnecessary major surgery."

Project collaborator, Professor Mark Pritchard, Consultant Gastroenterologist at Royal Liverpool University Hospital said: "Unfortunately, many patients with have inoperable cancers by the time of presentation, and even when surgery is performed it can often be unsuccessful. There is a real, pressing clinical need to develop new technologies which can detect early changes that occur within individual cells prior to cancer development. Using ALICE, Professor Weightman has been able to detect such cellular changes. This technology may have similar applications in other types of cancer which have a well established premalignant stage."

Professor Weightman added: "Eventually we hope to develop a diagnostic test that can be used in an endoscope. The most promising approach may be to develop a test using the intense terahertz light also generated by ALICE. ALICE is Europe's most intense band source of terahertz light and the only one in the world equipped with a tissue culture facility for research on cancer. This would lead to much cheaper and more efficient diagnosis of the disease. However this development is some way off."

STFC's Professor Susan Smith, responsible for ALICE, said: "It is fantastic news that, through ALICE, we now have an improved technology that could lead to significant advances in the treatment of cancer. With ALICE we have an opportunity to look at cells in a way that has not been done before. It is particularly exciting that these experiments are now pointing towards an accurate diagnostic test that could change the lives of thousands of patients and we look forward to continuing to work with Professor Weightman as he takes this invaluable research to the next level."

ALICE, at STFC's Daresbury Laboratory in Cheshire, is an R&D prototype for the next generation of particle accelerators and is the first of its kind in Europe. It is based upon a new mode of operation, known as energy recovery, where the energy used to create its high energy beam is captured and re-used after each circuit of the accelerator, so less power is required making it cheaper to run. Electrons are sent round the accelerator at 99.99% of the speed of light and 99.9% of the power at the final accelerator stage is recovered and re-used.

Explore further: 'Sponge on a string' trial launched to try and prevent deadly oesophageal cancer

Related Stories

'Sponge on a string' trial launched to try and prevent deadly oesophageal cancer

October 14, 2011
(Medical Xpress) -- Cancer Research UK has launched a large multi-centre trial to test a new device for detecting Barrett’s oesophagus – a condition that puts sufferers at increased risk of developing cancer of ...

Barrett's patients who smoke twice as likely to develop oesophageal cancer

January 30, 2012
Smoking doubles the risk of developing oesophageal cancer in people with Barrett's Oesophagus, according to scientists at Queen's University Belfast and the Northern Ireland Cancer Registry.

Fluorescent dye pinpoints tiniest signs of oesophageal cancer

January 16, 2012
(Medical Xpress) -- A fluorescent dye that can be sprayed onto the oesophagus – the food pipe – could be used to detect oesophageal cancer earlier and spare patients unnecessary treatment, according to research ...

Researchers use sugar to halt esophageal cancer in its tracks

January 15, 2012
Scientists working at the Medical Research Council have identified changes in the patterns of sugar molecules that line pre-cancerous cells in the esophagus, a condition called Barrett's dysplasia, making it much easier to ...

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.