Complex wiring of the nervous system may rely on a just a handful of genes and proteins

February 10, 2012
This image shows nerves (labeled in green) that control body movements emerging from the spinal cord of a mouse (upper left, in cross section) and connecting to muscles in the base of the leg. The Salk researchers discovered that a combination of genes direct nerves to split in the leg (lower right) to make the proper connections with their target muscles during early development. Credit: Image: Courtesy Dario Bonanomi, Salk Institute for Biological Studies

Researchers at the Salk Institute have discovered a startling feature of early brain development that helps to explain how complex neuron wiring patterns are programmed using just a handful of critical genes. The findings, published February 3 in Cell, may help scientists develop new therapies for neurological disorders, such as amyotrophic lateral sclerosis (ALS), and provide insight into certain cancers.

The Salk researchers discovered that only a few proteins on the leading edge of a motor neuron's axon - its outgoing electrical "wire" - and within the extracellular soup it travels through guide the nerve as it emerges from the spinal cord. These molecules can attract or repel the axon, depending on the long and winding path it must take to finally connect with its target muscle.

"The budding neuron has to detect the local environment it is growing through and decide where it is, and whether to grow straight, move to the left or right, or stop," says the study's senior investigator, Sam Pfaff, a professor in Salk's Gene Expression Laboratory and a Howard Hughes Medical Institute investigator.

"It does this by mixing and matching just a handful of protein products to create complexes that tell a growing neuron which way to go, in the same way that a car uses the GPS signals it receives to guide it through an unfamiliar city," he says.

The brain contains millions of times the number of neuron connections than the number of genes found in the DNA of . This is one of the first studies to try and understand how a growing neuron integrates many different pieces of information in order to navigate to its eventual target and make a functional connection.

This is Samuel Pfaff. Credit: Image: Courtesy of Salk Institute for Biological Studies

"We focused on that control muscle movements, but the same kind of thing is going on throughout embryonic development of the entire nervous system, during which millions of axons make trillions of decisions as they move to their targets," he says. "It is the exquisite specificity with which they grow that underlies the basic architecture and proper function of the nervous system."

These findings might eventually shed new light on a number of clinical disorders related to faulty nerve cell functioning, such as ALS, which is also known as Lou Gehrig's disease, says the first author on the paper, Dario Bonanomi, a post-doctoral researcher in Pfaff's laboratory.

"These are the motor neurons that die in diseases like Lou Gehrig's disease and that are linked to a genetic disorder in children known as spinal muscle atrophy," Bonanomi says.

"It is also a jumping off point to try and understand the basis for defects that might arise during fetal development of the nervous system," he added. "A better understanding of those signals might help to be able to regenerate and rewire circuits following diseases or injuries of the ."

The researchers say the study also offers insights into cancer development, because a protein the researchers found to be crucial to the "push and pull" signaling system - Ret- is also linked to cancer. Mutations that activate Ret are linked to a number of different kinds of tumors.

The other protein receptors described in the study, known as Ephs, have also been implicated in cancer, Pfaff says.

"This study suggests that the way cells detect signals in their environment is likely a universal strategy," he says, "and we know that genes and proteins known to function primarily during have been linked to cancer."

"Controlling neuronal growth requires very potent signaling molecules, and it makes sense they would be linked to disease," Pfaff says. "We hope our findings help further unravel these connections."

Explore further: Researchers uncover a new piece of the puzzle in the development of our nervous system

Related Stories

Researchers uncover a new piece of the puzzle in the development of our nervous system

July 14, 2011
Researchers at the Institut de recherches cliniques de Montréal (IRCM) are among the many scientists around the world trying to unearth our nervous system's countless mysteries. Dr. Artur Kania, Director of the IRCM's ...

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Feb 11, 2012
Embryonically you are looking for a 'never-before-seen bioelectric pattern':

http://www.physor...een.html

GPS as a universal strategy has never looked better.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.