Research team takes new approach to studying differences between human and monkey brains

February 6, 2012 by Bob Yirka, Medical Xpress report
Intra- and interspecies activity correlation from monkey areas PITd and CITd. Image: Nature Methods, doi:10.1038/nmeth.1868

(Medical Xpress) -- In order to provide more insight into how human and monkey brains are similar and how they’re different, a research team has taken a different approach to studying both to find out which parts of the brains of each respond in similar ways, and which, if any, differ, when exposed to a shared experience. In this case, the team, as they describe in their paper published in Nature Methods, describe how they exposed groups of humans and monkeys to the same section of a Hollywood movie, while monitoring them via fMRI and found some brain areas responded in both groups as expected, while others were a complete surprise.

Researchers have known for some time that if several people watch the same movie, the same general parts of their brains light up during the same scenes (referred to as neurocinematics) suggesting a rough commonality in how people perceive the same stimuli. Other species have been shown to demonstrate the same basic trait. What’s not been studied is how certain parts of reactions compare between humans and other species; this is because most prior studies comparing human and monkey brains tended to rest on the underlying assumption that the two shared the same basic physiology, i.e. both use the same basic brain regions to do the same kinds of mental processing.

In this new research, the team set out to challenge this idea. They wondered if perhaps as the human brain evolved, some brain functions might have shifted to other regions. To find out, or at least to learn more, they enlisted 24 human volunteers and four rhesus monkeys. Both groups were tested individually by exposing them to the same thirty minute segment from the movie, the “The Good, The Bad and The Ugly” starring Clint Eastwood, while also performing brain scans using .

Not surprisingly, they found many instances where the human and monkey brains lit up in basically the same ways. Those brain regions responsible for vision, for example, all responded to changes on the screen by lighting up the part of the cortex known to be responsible for performing those chores.

The team also found some significant differences too however, such as in parts of the visual cortex that are involved in making sense of what is seen. In this case, some areas were activated in completely different parts of the brain and in other cases activations were delayed in time, suggesting the two species use different parts of the their brains to perform some of the same basic functions.

These findings don’t of course prove that humans have moved functionality over time, as it’s possible the monkeys simply grew bored watching scenes unfold they couldn’t understand, but it does shed some light on the idea that human brains really aren’t just bigger, fancier versions of monkey brains, but are more evolved in ways that aren’t really understood at all.

Explore further: Monkeys with larger friend networks have more gray matter

More information: Interspecies activity correlations reveal functional correspondence between monkey and human brain areas, Nature Methods (2012) doi:10.1038/nmeth.1868

Abstract
Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.

Related Stories

Monkeys with larger friend networks have more gray matter

November 4, 2011
New research in the UK on rhesus macaque monkeys has found for the first time that if they live in larger groups they develop more gray matter in parts of the brain involved in processing information on social interactions.

Neuroscientists explore how longstanding conflict influences empathy for others

January 23, 2012
MIT postdoc Emile Bruneau has long been drawn to conflict — not as a participant, but an observer. In 1994, while doing volunteer work in South Africa, he witnessed firsthand the turmoil surrounding the fall of apartheid; ...

Research team uses optogenetics to reverse effects of cocaine

December 8, 2011
(Medical Xpress) -- A team of Swiss researchers, led by Christian Lüscher of the University of Geneva, has found the first casual link between cocaine use and physical brain changes and in so doing, as they describe ...

Neuroscientists unlock shared brain codes

October 20, 2011
A team of neuroscientists at Dartmouth College has shown that different individuals' brains use the same, common neural code to recognize complex visual images.

Recommended for you

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

HenisDov
1 / 5 (4) Feb 06, 2012
See way back

http://universe-l...rsity-2/

Dov Henis (comments from 22nd century)
http://universe-l...ilation/
dweeb
4 / 5 (1) Feb 06, 2012
change the movies - try "born free" , "call of the wild" , "romeo and juliet" , and "Rocky" ;)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.