Team isolates nerve cells involved in storing long term memory and gene proteins associated with them

February 10, 2012 by Bob Yirka report
Identification of common neurons in two Gal4 lines. Image: Science DOI: 10.1126/science.1212735

(Medical Xpress) -- A research team in Taiwan has succeeded in isolating two nerve cells in fruit fly brains that are believed to be the major players in allowing for the formation of long term memories. Furthermore, they’ve also found the genes that appear to be essential in creating related proteins that allow such memories to be saved. They have published a paper describing their work in Science.

To better understand human functions such as memory processing, researchers look to much less complicated brains as a model. The hope is that whatever is learned in studying simpler brains, can at some point be applied to larger more complicated ones such as ours. Because of this, researchers quite often study fruit fly brains. This is because they have very small brains, but still possess some important brain skills, such as the ability to form both long and short term memory.

To study in fruit flies, the team used a small enclosure divided into regions, or wings. In one wing, odors were presented that attract the fruit fly, when it arrived it was given a mild electric shock. The other wing was safe. Over time, the fruit flies came to remember that the odor in one room led to an unpleasant result, while the other did not.

Visualizing de novo KAEDE synthesis in per neurons during ZT0-6 and ZT12-18, respectively. Movie: Science, DOI: 10.1126/science.1212735

Then, to find out which part of the brain was used to store those memories, the team used a tiny heating device that allowed them to selectively warm parts of the brain, which in turn prevent the kinds of proteins from synthesizing in neurons that are known to be needed to store long term memories. By testing neurons in one part of the brain after another, they narrowed down the possibilities until landing on two called dorsal-anterior-lateral (DAL) neurons. Heating these two, which are not located in the mushroom body, as expected, but outside of it, they found that long term memory was disabled. This meant they’d found which neurons were mainly responsible for allowing for the storage of long term memories.

Once they had that information, they team next genetically altered some to cause their brain cells to glow green, and then to red when exposed to UV light. This allowed them to follow protein growth in the fruit fly brains over time. When they applied this to the DAL neurons, they were able to trace the specific genes responsible for their formation.

Explore further: Scientists identify mechanism of long-term memory

More information: Visualizing Long-Term Memory Formation in Two Neurons of the Drosophila Brain, Science 10 February 2012:
Vol. 335 no. 6069 pp. 678-685. DOI: 10.1126/science.1212735

Long-term memory (LTM) depends on the synthesis of new proteins. Using a temperature-sensitive ribosome-inactivating toxin to acutely inhibit protein synthesis, we screened individual neurons making new proteins after olfactory associative conditioning in Drosophila. Surprisingly, LTM was impaired after inhibiting protein synthesis in two dorsal-anterior-lateral (DAL) neurons but not in the mushroom body (MB), which is considered the adult learning and memory center. Using a photoconvertible fluorescent protein KAEDE to report de novo protein synthesis, we have directly visualized cyclic adenosine monophosphate (cAMP) response element–binding protein (CREB)–dependent transcriptional activation of calcium/calmodulin-dependent protein kinase II and period genes in the DAL neurons after spaced but not massed training. Memory retention was impaired by blocking neural output in DAL during retrieval but not during acquisition or consolidation. These findings suggest an extra-MB memory circuit in Drosophila: LTM consolidation (MB to DAL), storage (DAL), and retrieval (DAL to MB).

Related Stories

Scientists identify mechanism of long-term memory

April 13, 2011
Using advanced imaging technology, scientists from the Florida campus of The Scripps Research Institute have identified a change in chemical influx into a specific set of neurons in the common fruit fly that is fundamental ...

How memory is read out in the brain: MB-V2 nerve cells enable the read-out of associative memories

July 8, 2011
What happens if you cannot recall your memory correctly? You are able to associate and store the name and face of a person, yet you might be unable to remember them when you meet that person. In this example, the recall of ...

Sleep switch found in fruit flies

June 23, 2011
Rather than count sheep, drink warm milk or listen to soothing music, many insomniacs probably wish for a switch they could flick to put themselves to sleep.

Making memories last: Prion-like protein plays key role in storing long-term memories

January 27, 2012
Memories in our brains are maintained by connections between neurons called "synapses". But how do these synapses stay strong and keep memories alive for decades? Neuroscientists at the Stowers Institute for Medical Research ...

Recommended for you

Scientists reveal new avenue for drug treatment in neuropathic pain

November 24, 2017
New research from King's College London has revealed a previously undiscovered mechanism of cellular communication, between neurons and immune cells, in neuropathic pain.

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 10, 2012
Part of what I call "higher order science," which is the science which moves science along. If this were to lead to longer and better memories in humans, without causing insanity as you cannot forget your first girlfriend or the time your puppy died, then we could have as one effect, smarter scientists, leading to better science... a virtuous circle.
not rated yet Feb 11, 2012
'Learning' takes on new meaning in light of total recall.
Insanity is history repeating itself - war comes to mind.

Kudos to the research and researchers.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.