Treating cancer as a chronic disease

March 30, 2012 By Kevin Hattori
Treating cancer as a chronic disease
Professor Karl Skorecki

New research from the Technion-Israel Institute of Technology Rappaport Faculty of Medicine and Research Institute and the Rambam Medical Center may lead to the development of new methods for controlling the growth of cancer, and perhaps lead to treatments that will transform cancer from a lethal disease to a chronic, manageable one, similar to AIDS.

By placing cancer in and near a growth developed from a population of human , scientists have demonstrated that the cancer cells grow and proliferate more robustly when exposed to than they do in a typical petri dish or mouse model. The cancer cell population is also more diverse than had previously been understood.  The research was published in the current advanced online issue of the journal Stem Cells. Maty Tzukerman, Rambam senior research scientist and the project leader and senior co-author on the report, says that this model will facilitate targeted drug discovery aimed at blocking the cancer cell self-renewal process.

Previous studies have determined that some tumor cells appear to be differentiated, while others retain the self-renewal property that makes cancer so deadly. According to Technion Professor Karl Skorecki, director of Medical Research and Development at Rambam Health Care Campus and senior co-author on the report, this new research attempts to understand how cancer grows, and to find ways to halt the runaway replication.

In order to mimic the environment as closely as possible, the research team developed a teratoma - a tumor made of a heterogenous mix of cells and tissues - by enabling the differentiation of human embryonic stem cells into a variety of normally occuring human cell lines on a carrier mouse. The human cellular teratoma constitutes a new platform of healthy human cells for monitoring the behavior and proliferation of human cancer cells.

For this study, the team took cells from one woman's ovarian clear cell carcinoma and injected them either into or alongside the human stem cell-derived environment. "We noticed very early on, rather strikingly, that the human cancer cells grow more robustly when they are in the teratoma environment compared to any other means in which we grew them, such as in a mouse muscle or under the skin of a mouse," says Skorecki.

The scientists were able to tease out six different kinds of self-renewing cells, based on behavior - how quickly they grow, how aggressive they are, how they differentiate - and on their molecular profile. This was a previously unknown finding, that one tumor might have such a diversity of cells with crucial fundamental growth properties. Tzukerman explains that the growth of the cancer cell subpopulations can now be explained by their proximity to the human cell environment.

The researchers cloned and expanded the six distinct cell populations and injected them into the human stem cell teratomas. One key observation is that some cells, which were not self-replicating in any other model, became self-replicating when exposed to the human cells.

Skorecki said that while he wasn't surprised that the human environment affected the growth, he was in fact surprised by the magnitude of the effect: "We've known for years now that cancers are complex organs, but I didn't think the power of the human stem cell environment would be so robust, that it would make such a big difference in how the cells were grown."

The researchers point out that they do not yet know the cues that particularly enhance the cancer's proliferation, and the team is now working on isolating the factors from human cells that promote such plasticity and self-renewing properties. The scientists explain that this may eventually allow physicians to manage cancer as a chronic disease: instead of one therapy against the entire tumor, researchers may develop a method to tease out the variety of self-renewing cell lines of a particular tumor and determine what allows each to thrive, then attack that mechanism.

Skorecki and Tzukerman say that an important next step in this line of cancer research will be to identify and develop ways of blocking the factor or factors that promote this essential self-renewing property of cancer, thus relegating many forms of to controllable, chronic diseases.

This research was supported with grants from the Daniel M. Soref Charitable Trust, the Skirball Foundation, the Richard D. Satell Foundation, the Sohnis and Forman families, and the Science Foundation.

Explore further: New role for Vascular Endothelial Growth Factor in regulating skin cancer stem cells

Related Stories

New role for Vascular Endothelial Growth Factor in regulating skin cancer stem cells

October 19, 2011
Skin squamous cell carcinomas are amongst the most frequent cancers in humans. Recent studies suggest that skin squamous cell carcinoma, like many other human cancers, contain particular cancer cells, known as cancer stem ...

Cancer stem cells recruit normal stem cells to fuel ovarian cancer

July 18, 2011
Researchers at the University of Michigan Comprehensive Cancer Center have found that a type of normal stem cell fuels ovarian cancer by encouraging cancer stem cells to grow.

Cell senescence does not stop tumor growth

January 19, 2012
Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Stem cell innovation jump-starts circulation

March 8, 2012
A stem cell breakthrough at the Technion-Israel Institute of Technology could ultimately benefit human patients struggling to recover from cardiovascular disease, or serious circulatory damage from conditions such as diabetes.   Programming ...

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.