Cancer epigenetics: Breakthrough in ID'ing target genes

March 13, 2012
In work that could shed light on the molecular workings of cancer cells, researchers from Rice University and Baylor College of Medicine have developed a method to rapidly identify genes that can be targeted for silencing. The team includes (clockwise from left) Qinghua Wang, Jianpeng Ma, Brian Kirk, Jia Zeng and Yufeng Gou. Credit: Jeff Fitlow/Rice University

Cancer is usually attributed to faulty genes, but growing evidence from the field of cancer epigenetics indicates a key role for the gene "silencing" proteins that stably turn genes off inside the cell nucleus. A new study from Rice University and Baylor College of Medicine (BCM) promises to speed research in the field by rapidly identifying the genes that epigenetic proteins can target for silencing.

The study, which appears this week in , shows how a new computer program called EpiPredictor can search any genome to identify specific affected by epigenetic proteins. The research includes detailed experimental findings that verify EpiPredictor's results. The research was funded in part by the Institute of Texas (CPRIT).

"Cancer epigenetics is a new field, and we are still struggling with the basics," said lead investigator Jianpeng Ma, professor of bioengineering at Rice and the Lodwick T. Bolin Professor of Biochemistry at BCM. "It's something like a board game. Until now, we've understood some of the rules and seen a few of the pieces, but the game board itself has been mostly blank. EpiPredictor lets everyone see the board. It really changes things."

While many cancers have been linked to mutations in the DNA sequence of particular genes, do not involve . Instead, epigenetics allows two cells with identical to behave in wholly different ways. Epigenetic proteins effectively edit the genome by turning off genes that are not needed. This editing process is what allows human beings to have specialized cells -- like , and -- that look and behave differently, even though they share the same DNA.

The key epigenetic players in cancer are a family of proteins called polycomb-group (PcG) proteins. PcGs are found deep inside the nucleus of cells, in the chamber where DNA is stored. Studies have found abnormally high levels of PcGs in some of the most aggressive forms of breast and prostate cancer.

PcGs are generalists that can be called upon to silence any one of several hundred to several thousand genes. They are recruited to this task by polycomb response elements (PREs), segments of DNA that are located next to the genes the proteins subsequently silence. This is where the playing board goes blank; though scientists know there are literally hundreds to thousands of potential PREs in any given genome -- including everything from simple insects to human beings -- only a few PREs have ever been found.

"So far, only two PREs have been experimentally verified in mammals -- one in mice and one in humans," said EpiPredictor creator Jia Zeng, a BCM postdoctoral research associate. "We suspect there are so many of them, but finding them has been difficult."

Zeng, a computer scientist, had no formal biology training when she joined Ma's laboratory under a CPRIT-funded training program for computational cancer research.

"One of the biggest challenges since the completion of the Human Genome Project has been how to dig useful information out of the enormous amount of genomic data," Ma said.

Ma said Zeng's new method for zeroing in on PRE sequences is broadly applicable for genomic data mining in areas beyond cancer research.

"Determining the function of a gene based solely on sequence data is virtually impossible," Ma said. "Recognizing this, Jia applied some advanced tools from computer science to create a learning program that could be trained to look for PRE sequences based upon the scant experimental data that were available."

In tests on the genome of the fruit fly Drosphilia melanogaster, the EpiPredictor program found almost 300 epigenetic target genes. Experimental research by Ma's longtime collaborator, BCM biochemist Qinghua Wang, verified that the EpiPredictor predictions were biologically significant.

"We are now working on using the method to scan the human genome to search for potential genes that play a role in cancer epigenetics," said Wang, assistant professor of biochemistry and molecular biology. "We also hope that others will explore how this new method may help to identify the location and function of genes beyond the realm of epigenetics."

Explore further: Study gives clue as to how notes are played on the genetic piano

More information: A copy of the Nucleic Acids Research paper is available at:
nar.oxfordjournals.org/content … 3/12/nar.gks209.full

Related Stories

Study gives clue as to how notes are played on the genetic piano

May 12, 2011
Japanese and U.S. scientists in the young field of epigenetics Thursday reported a rationale as to how specific genes are silenced and others are not. Because this effect can be reversed, it may be possible to devise therapies ...

Researchers characterize epigenetic fingerprint of 1,628 people

June 2, 2011
Until a decade, it was believed that differences between people were due solely to the existence of genetic changes, which are alterations in the sequence of our genes. The discoveries made during these last ten years show ...

Recommended for you

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.