Cancer paradigm shift: Biomarker links clinical outcome with new model of lethal tumor metabolism

March 15, 2012

Researchers at the Kimmel Cancer Center at Jefferson have demonstrated for the first time that the metabolic biomarker MCT4 directly links clinical outcomes with a new model of tumor metabolism that has patients "feeding" their cancer cells. Their findings were published online March 15 in Cell Cycle.

To validate the of the biomarker, a research team led by Agnieszka K. Witkiewicz, M.D., Associate Professor of Pathology, Anatomy and Cell Biology at Thomas Jefferson University, and Michael P. Lisanti, M.D., Ph.D., Professor and Chair of and Regenerative Medicine at Jefferson, analyzed samples of patients with triple negative breast cancer, one of the most deadly of breast cancers, with fast-growing tumors that often affect younger women.

A of over 180 women revealed that high levels of the biomarker MCT4, or monocarboxylate transporter 4, were strictly correlated with a loss of caveolin-1 (Cav-1), a known marker of early and metastasis in several cancers, including prostate and breast.

"The whole idea is that MCT4 is a metabolic marker for a new model of tumor metabolism and that patients with this type of metabolism are feeding their . It is lethal and resistant to current therapy," Dr. Lisanti said. "The importance of this discovery is that MCT4, for the first time, directly links clinical outcome with , allowing us to develop new more effective anti-cancer drugs."

Analyzing the human breast cancer samples, the team found that women with high levels of stromal MCT4 and a loss of stromal Cav-1 had poorer overall survival, consistent with a higher risk for recurrence and metastasis, and .

Applying to a Triple Threat

Today, no such markers are applied in care of triple negative breast cancer, and as a result, patients are all treated the same. Identifying patients who are at high risk of failing standard chemotherapy and poorer outcomes could help direct them sooner to clinical trials exploring new treatments, which could ultimately improve survival.

"The idea is to combine these two biomarkers, and stratify this patient population to provide better personalized cancer care," said Dr. Witkiewicz.

The findings suggest that when used in conjunction with the stromal Cav-1 biomarker, which the authors point out has been independently validated by six other groups worldwide, MCT4 can further stratify the intermediate-risk group into high and low risk.

Since MCT4 is a new druggable target, researchers also suggest that MCT4 inhibitors should be developed for treatment of aggressive breast cancers, and possibly other types. Targeting patients with an MCT4 inhibitor, or even simple antioxidants, may help treat high-risk patients, who otherwise may not respond positively to conventional treatment, the researchers suggest.

Paradigm Shift

But the work stems beyond triple negative , challenging an 85-year-old theory about cancer growth and progression.

This paper is the missing clinical proof for the paradigm shift from the "old cancer theory" to the "new cancer theory," known as the "Reverse Warburg Effect," said Dr. Lisanti. The new theory being that aerobic glycolysis actually takes place in tumor associated fibroblasts, and not in cancer cells, as the old theory posits.

"The results by Witkiewicz et al. have prominent conceptual and therapeutic implications," wrote Lorenzo Galluzzi, Ph.D., Oliver Kepp, Ph.D., and Guido Kroemer, M.D., Ph.D. of the French National Institute of Health and Medical Research and Institut Gustave Roussy, in an accompanying editorial. "First, they strengthen the notion that cancer is not a cell-autonomous disease, as they unravel that alterations of the tumor stroma may constitute clinically useful biomarkers".

"Second, they provide deep insights into a metabolic crosstalk between tumor cells and their stroma that may be targeted by a new class of anticancer agents."

Dr. Kroemer entitled his commentary "Reverse Warburg: Straight to Cancer" to emphasize that the connective tissue cells (fibroblasts) are directly "feeding" cancer cells, giving them a clear growth and survival advantage. New personalized therapies would cut off the "fuel supply" to cancer cells, halting tumor growth and .

Explore further: SABCS: Loss of RB in triple negative breast cancer associated with favorable clinical outcome

Related Stories

SABCS: Loss of RB in triple negative breast cancer associated with favorable clinical outcome

December 9, 2011
Researchers at the Thomas Jefferson University Hospital and Kimmel Cancer Center at Jefferson have shown that loss of the retinoblastoma tumor suppressor gene (RB) in triple negative breast cancer patients is associated with ...

Researchers unlock key to personalized cancer medicine using tumor metabolism

April 15, 2011
Identifying gene mutations in cancer patients to predict clinical outcome has been the cornerstone of cancer research for nearly three decades, but now researchers at the Kimmel Cancer Center at Jefferson have invented a ...

New 'Achilles' heel' in breast cancer: tumor cell mitochondria

December 1, 2011
Researchers at the Kimmel Cancer Center at Jefferson have identified cancer cell mitochondria as the unsuspecting powerhouse and "Achilles' heel" of tumor growth, opening up the door for new therapeutic targets in breast ...

Cancer cells accelerate aging and inflammation in the body to drive tumor growth

May 26, 2011
Researchers at the Kimmel Cancer Center at Jefferson have shed new light on the longstanding conundrum about what makes a tumor grow—and how to make it stop. Interestingly, cancer cells accelerate the aging of nearby ...

Recommended for you

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.