DNA marker predicts platinum drug response in breast, ovarian cancer

March 22, 2012

Scientists from Brigham and Women's Hospital and Dana-Farber Cancer Institute and their colleagues have found a genetic marker that predicts which aggressive "triple negative" breast cancers and certain ovarian cancers will likely respond to platinum-based chemotherapies.

The marker, found on chromosomes within the cells, could lead to a test for identifying patients whose cancers could be effectively treated by a single platinum-based drug, "and avoid the toxicities of other chemotherapy combinations," says Andrea Richardson, MD, PhD, co senior author of the study and a surgical pathologist at Brigham and Women's and Dana-Farber.

The report is being published in the April issue of Cancer Discovery, a journal of the American Association for Cancer Research.

Many cancer treatments work by damaging DNA within , rendering the cells unable to grow and divide. While some can readily repair broken , allowing them to survive drug or , others have lost this repair capacity, making them vulnerable to DNA-damaging agents.

The new marker, Richardson says, flags breast and that can't repair the type of caused by treatment with platinum drugs, including cisplatin and carboplatin. A for the marker could be particularly valuable in treating triple-negative breast cancers, which are resistant to anti-hormonal therapies or targeted drugs like Herceptin.

"We currently do not have any targeted therapies for patients with triple-negative breast cancer, so if these laboratory findings are confirmed and an assay is created to predict sensitivity to drugs that target defective DNA repair, it would be a major step forward," says Richardson, the primary pathologist for the study. However, she adds, such an assay isn't likely to be developed soon.

The new was discovered when Richardson and others studied tumor tissue collected from triple negative who participated in two clinical trials of platinum drug therapy. Triple-negative tumors develop in about 80 percent of women who carry mutated genes BRCA1 and BRCA2. These tumors are characterized by a lack of estrogen, progesterone, and HER2 receptors, which makes them unresponsive to targeted treatments that block those receptors.

The two clinical trials, led by Judy Garber, MD, MPH, of Dana-Farber, were investigating whether platinum drugs would also be effective in so-called "sporadic" triple negative tumors -- those that develop in the absence of BRCA1 and BRCA2 genetic mutations. Overall, about 20 percent of breast cancers are triple negative. Some of these cancers respond to standard chemotherapy drugs, while others don't. The patients whose triple negative tumors do not go away after chemotherapy have a particularly poor prognosis.

A total of 79 patients in the two trials received cisplatin alone or in combination with bevacizumab (Avastin) to shrink their tumors prior to removing them surgically. In both trials, approximately 40 percent of patients had a complete or near-complete disappearance of the cancer after the cisplatin therapy.

The researchers analyzed tissue from the patients before and after the cisplatin treatment, looking for features in the cancer cells' DNA that predicted a favorable response to the pre-operative chemotherapy. They found one -- a high level of partial chromosome losses in the tumor cells that responded to the cisplatin treatment.

The tell-tale pattern, or genetic marker, was finding a high number of chromosome regions showing allelic imbalance, meaning that instead of the normal equal distribution of DNA from both parents, the tumor cells had lost one parental copy of the DNA in parts of many chromosomes. This didn't surprise the researchers: in fact, they expected it, since allelic imbalance is also found in triple-negative breast cancers associated with BRCA 1 and BRCA2 mutations. Specifically, the strongest indicator of defective DNA damage repair was in cancer cells when the regions of allelic imbalance included the tips of the chromosomes, called telomeres.

The scientists also analyzed data on tumor characteristics and treatment outcomes from The Cancer Genome Atlas, a federally funded database, to demonstrate that allelic imbalance predicted defective DNA damage repair and sensitivity to platinum drugs in serous .

In the future, the scientists say, allelic instability "may prove useful in predicting response to a variety of therapeutic strategies exploiting defective DNA repair."

Explore further: Ovarian cancer patients survive longer with BRCA2 mutated in tumors

Related Stories

Ovarian cancer patients survive longer with BRCA2 mutated in tumors

October 11, 2011
Women with high-grade ovarian cancer live longer and respond better to platinum-based chemotherapy when their tumors have BRCA2 genetic mutations, researchers at The University of Texas MD Anderson Cancer Center and the Institute ...

Scientists identify overactive genes in aggressive breast cancers

June 1, 2011
Scientists at Dana-Farber Cancer Institute have identified an overactive network of growth-spurring genes that drive stem-like breast cancer cells enriched in triple-negative breast tumors, a typically aggressive cancer that ...

SABCS: Loss of RB in triple negative breast cancer associated with favorable clinical outcome

December 9, 2011
Researchers at the Thomas Jefferson University Hospital and Kimmel Cancer Center at Jefferson have shown that loss of the retinoblastoma tumor suppressor gene (RB) in triple negative breast cancer patients is associated with ...

Olaparib shows promise in treating ovarian cancer, even without BRCA mutations

August 21, 2011
The PARP inhibitor, olaparib, that has shown promise in women with an inherited mutation in their BRCA1 or BRCA2 gene (accounting for about 5-10% of breast and ovarian cancer cases), has, for the first time, been shown to ...

Recommended for you

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Scientists restore tumor-fighting structure to mutated breast cancer proteins

September 20, 2017
Scientists at the Virginia Tech Carilion Research Institute have successfully determined the full architecture of the breast cancer susceptibility protein (BRCA1) for the first time. This three-dimensional information provides ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

Researchers identify new target, develop new drug for cancer therapies

September 20, 2017
Opening up a new pathway to fight cancer, researchers at the University of Pennsylvania have found a way to target an enzyme that is crucial to tumor growth while also blocking the mechanism that has made past attempts to ...

New clinical trial explores combining immunotherapy and radiation for sarcoma patients

September 20, 2017
University of Maryland School of Medicine researchers are investigating a new approach to treat high-risk soft-tissue sarcomas by combining two immunotherapy drugs with radiation therapy to stimulate the immune system to ...

Targeted antibiotic use may help cure chronic myeloid leukaemia

September 19, 2017
The antibiotic tigecycline, when used in combination with current treatment, may hold the key to eradicating chronic myeloid leukaemia (CML) cells, according to new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.