Genetic research develops tools for studying diseases, improving regenerative treatment

March 19, 2012, Kansas State University

Research from a Kansas State University professor may make it easier to recover after spinal cord injury or to study neurological disorders.

Mark Weiss, professor of anatomy and physiology, is researching for spinal cord injury or diseases such as Parkinson's disease. He is developing technology that can advance and regenerative medicine -- a type of research that can greatly improve animal and human health.

"We're trying to build tools, trying to build models that will have broad applications," Weiss said. "So if you're interested in or if you're interested in response after an injury, we're trying to come up with cell lines that will teach us, help us to solve a medical mystery."

Weiss' research team has perfected a technique to use stem cells to study targeted . They are among a handful of laboratories in the world using these types of models for disease. The research is an important step in the field of , which focuses on understanding the functions and roles of these genes in disease.

The researchers are creating several tools to study functional genomics. One such tool involves developing new ways to use fluorescent transporters, which make it easier to study proteins and their functions. These fluorescent transporters can be especially helpful when studying neurological disorders such as Parkinson's disease, stroke and spinal cord injury.

"People who have spinal cord injury do not experience a lot of regeneration," Weiss said. "It is one of the problems of the nervous system -- it is not great at regenerating itself like other tissues."

The researchers want to discover a way to help this regenerative process kick in. By studying signals from fluorescing cells, they can understand how are reactivated.

"We want to try and make these , and then we can test different kinds of treatment to see how they assist in the regenerative process," Weiss said.

Weiss' stem cell research has appeared in two recent journals: Stem Cells and Development and the Journal of Assisted Reproduction and Genetics. His research has been funded by the National Institutes of Health and university funds, including the Johnson Cancer Research Center.

Weiss' seven-member research team includes a visiting professor, two full-time researchers, a graduate student and three undergraduates. He has also been collaborating with researchers from the University of Kansas Medical Center.

Weiss was also part of a Kansas State University research team to find and patent a noncontroversial source of stem cells from a substance in the umbilical cord.

Explore further: Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

Related Stories

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

October 28, 2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential ...

New class of stem cell-like cells discovered offers possibility for spinal cord repair

September 15, 2011
The Allen Institute for Brain Science announced today the discovery of a new class of cells in the spinal cord that act like neural stem cells, offering a fresh avenue in the search for therapies to treat spinal cord injury ...

Recommended for you

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.