Scientists study human diseases in flies

March 12, 2012, Genetics Society of America

More than two-thirds of human genes have counterparts in the well-studied fruit fly, Drosophila melanogaster, so although it may seem that humans don't have much in common with flies, the correspondence of our genetic instructions is astonishing. In fact, there are hundreds of inherited diseases in humans that have Drosophila counterparts.

At the ongoing Genetics Society of America's 53rd Annual Drosophila Research Conference in Chicago, several scientific investigators shared their knowledge of some of these diseases, including ataxia-telangiectasia (A-T), a ; Rett Syndrome, a ; and kidney stones, a common health ailment. All are the subject on ongoing research using the Drosophila .

Andrew Petersen, a graduate student in Dr. David Wassarman's laboratory at the University of Wisconsin-Madison, discussed his experiments with a fly model of the rare childhood disease ataxia-telangiectasia. A-T causes within the brain, poor coordination, characteristic spidery blood vessels that show through the skin, and susceptibility to leukemias and lymphomas. A-T generally results in a life expectancy of only 25 years.

A-T is normally lethal in flies, but Mr. Petersen induced a mutant that develops symptoms only when the environmental temperature rises above a certain level, allowing Mr. Petersen to control the lethality by varying the fly's environment. The mutant flies lose their ability to climb up the sides of their vial habitats –- a sign of neurodegeneration -- and die prematurely. Their glial cells are primarily affected, rather than the neurons that the glia support. In addition, an innate immune response is activated in the compromised glia, a scenario reminiscent of Alzheimer's and Parkinson's diseases. "We are one step closer to knowing how these diseases occur and possibly how we can treat them," Mr. Petersen concluded.

Sarah Certel, Ph.D., assistant professor of biological sciences at the University of Montana-Missoula, works with flies that have been altered to include the human gene MeCP2. This gene controls how neurons use many other genes, and the amount of the protein that it encodes must be within a specific range for the brain to develop normally. Too little of the protein and Rett syndrome results, a disorder on the X chromosome, which exclusively affects females in childhood. (Males with this mutation are generally miscarried or are stillborn.) It causes a constellation of symptoms including characteristic hand-wringing, autism, seizures, cognitive impairment, and loss of mobility. Yet too much of the protein causes similar problems.

In flies, altered levels of the MeCP2 protein affect sleep and aggression. For flies and most model organisms, sleep is inferred as the absence of activity during the day and night. To study sleep, Dr. Certel conducted "actograms" for individual flies. "The actogram records the activities of individually housed when they cross an infrared beam," she explained. The flies' sleep became fragmented, delayed, and shortened. "We're studying the link between the cellular changes and behaviors," she added.

Switching from the brain to the urinary system, it was noted that "Drosophila get kidney stones too" began Julian Dow, Ph.D., professor of molecular and integrative physiology at the University of Glasgow, United Kingdom. The fly version of a kidney is much simpler in design, a quartet of Malpighian tubules that are conveniently transparent.

Dr. Dow discussed a fly mutant called "rosy," discovered a century ago, that corresponds to the rare human inborn error of metabolism called xanthinuria type 1, as well as a diet-induced blockage that corresponds to the more common human condition of calcium oxalate kidney stones. In time-lapse video, Dr. Dow showed stones appearing and growing in the Malpighian tubule.

"This was the first time in history that we saw kidney stones form -- something that you cannot ethically do in humans," he said. His research group, in collaboration with Dr. Michael Romero at the Mayo Institute, is now searching for chemical compounds that interfere with the formation of stones and their tendency to accrete into painful obstructions. They've already found a way to block a gene responsible for transporting the oxalate, slowing stone formation. With time, this work could help reduce the 250,000 emergency room admissions for in the USA annually and the more than $2 billion in health care costs for treating them.

These were only three of several human diseases discussed at the Drosophila Conference. Others included oxidative stress, cancer linked to diabetes, amyloid build-up in Alzheimer's disease, epilepsy, and muscular dystrophy. There are so many human diseases that have Drosophila counterparts that they are listed in a database called Homophila. Given the number that exist, we are certain to be learning more about our health from the fly in the years ahead.

Explore further: First ever multi-cellular model of Zellweger's syndrome developed

Related Stories

First ever multi-cellular model of Zellweger's syndrome developed

September 22, 2011
Research groups worldwide have tried to develop a simple model of a rare, fatal disease called Zellweger's syndrome but none has succeeded, until researchers at the Faculty of Medicine & Dentistry at the University of Alberta ...

Recommended for you

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.