Brain cell changes may cause sleep troubles in aging

April 24, 2012

Older animals show cellular changes in the brain "clock" that sets sleep and wakeful periods, according to new research in the April 25 issue of The Journal of Neuroscience. The findings may help explain why elderly people often experience trouble sleeping at night and are drowsy during the day.

Like humans, mice experience shifts in daily activities and as they age. To find out why, researchers directed by Johanna Meijer, PhD, at the Leiden University Medical Center in the Netherlands studied the electrical activity of cells in the (SCN), an area of the brain responsible for setting sleep-wake cycles.

Consistent with previous studies, the researchers found aged mice showed disrupted sleep behavior and weakened brain network activity in the SCN. But Meijer and colleagues also found changes occurring in individual SCN cells, not just in their networks.

"In fact, the changes at the single-cell level were more severe than the changes at the network level," said Meijer. This represents a shift in understanding of aging's effects on the brain.

The researchers made electrophysiological recordings from isolated SCN neurons, a difficult experiment given the advanced age of the animals and the small size of this type of neuron. They found aged SCN neurons lack day-night rhythms in some membrane properties. In addition, the team identified age-related reductions of certain potassium currents that are important to the neurons' rhythmic firing.

Because potassium and other can be manipulated with drugs, "This work provides a new target for potential therapeutic interventions that can mitigate the age-related decline in the sleep-wake cycle," said Christopher Colwell, PhD, an expert in circadian clock function at the University of California, Los Angeles, who was not involved in the study.

Explore further: Study shows new evidence of age-related decline in the brain's master circadian clock

Related Stories

Study shows new evidence of age-related decline in the brain's master circadian clock

July 19, 2011
(Medical Xpress) -- A new study of the brain's master circadian clock — known as the suprachiasmatic nucleus, or SCN — reveals that a key pattern of rhythmic neural activity begins to decline by middle age. The ...

Recommended for you

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Strategy might prevent infections in patients with spinal cord injuries

September 19, 2017
New research led by The Ohio State University Wexner Medical Center found a potential therapeutic strategy to prevent infections in patients with spinal cord injuries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.