Clinical decline in Alzheimer's requires plaque and proteins

April 23, 2012

According to a new study, the neuron-killing pathology of Alzheimer's disease (AD), which begins before clinical symptoms appear, requires the presence of both amyloid-beta (a-beta) plaque deposits and elevated levels of an altered protein called p-tau.

Without both, progressive clinical decline associated with AD in cognitively healthy older individuals is "not significantly different from zero," reports a team of scientists at the University of California, San Diego School of Medicine in the April 23 online issue of the .

"I think this is the biggest contribution of our work," said Rahul S. Desikan, MD, PhD, research fellow and resident in the UC San Diego Department of and first author of the study. "A number of planned – and the majority of Alzheimer's studies – focus predominantly on a-beta. Our results highlight the importance of also looking at p-tau, particularly in trials investigating therapies to remove a-beta. Older, non-demented individuals who have elevated a-beta levels, but normal p-tau levels, may not progress to Alzheimer's, while older individuals with elevated levels of both will likely develop the disease."

The findings also underscore the importance of p-tau as a target for new approaches to treating patients with conditions ranging from mild cognitive impairment (MCI) to full-blown AD. An estimated 5.4 million Americans have AD. It's believed that 10 to 20 percent of Americans age 65 and older have MCI, a risk factor for AD. Some current therapies appear to delay clinical AD onset, but the disease remains irreversible and incurable.

"It may be that a-beta initiates the Alzheimer's cascade," said Desikan. "But once started, the neurodegenerative mechanism may become independent of a-beta, with p-tau and other proteins playing a bigger role in the downstream degenerative cascade. If that's the case, prevention with anti-a-beta compounds may prove efficacious against AD for older, non-demented individuals who have not yet developed pathology. But novel, tau-targeting therapies may help the millions of individuals who already suffer from mild cognitive impairment or Alzheimer's disease."

The new study involved evaluations of healthy, non-demented elderly individuals participating in the ongoing, multi-site Alzheimer's Disease Neuroimaging Initiative, or ADNI. Launched in 2003, ADNI is a longitudinal effort to measure the progression of mild cognitive impairment and early-stage AD.

The researchers studied samples of cerebrospinal fluid (CSF) taken from ADNI participants.

"In these older individuals, the presence of a-beta alone was not associated with clinical decline," said Anders M. Dale, PhD, professor of radiology, neurosciences, and psychiatry at UC San Diego and senior author of the study. "However, when p-tau was present in combination with a-beta, we saw significant clinical decline over three years."

A-beta proteins have several normal responsibilities, including activating enzymes and protecting cells from oxidative stress. It is not known why a-beta proteins form plaque deposits in the brain. Similarly, the origins of p-tau are not well understood. One hypothesis, according to Desikan, is that a-beta plaque deposits trigger hyperphosphorylation of nearby tau proteins, which normally help stabilize the structure of brain cells. Hyperphosphorylation occurs when phosphate groups attach to a protein in excess numbers, altering their normal functions. Hyperphosphorylated tau – or p-tau – can then exacerbate the toxic effects of a-beta plaque upon .

The discovery of p-tau's heightened role in AD neurodegeneration suggests it could be a specific biomarker for the disease before clinical symptoms appear. While high levels of another tau protein – t-tau – in cerebrospinal fluid have been linked to neurologic disorders, such as frontotemporal dementia and traumatic brain injury, high levels of p-tau correlates specifically to increased neurofibrillary tangles in brain cells, which are seen predominantly with AD.

"These results are in line with another ADNI study of healthy controls and MCI participants that found progressive atrophy in the entorhinal cortex – one of the areas of the brain first affected in AD –only in amyloid positive individuals who also showed evidence of elevated p-tau levels," said Linda McEvoy, PhD, assistant professor of radiology and study co-author.

"One of the exciting dimensions of this paper was the combined use of cerebrospinal fluid markers and clinical assessments to better elucidate the neurodegenerative process underlying Alzheimer's disease in individuals who do not yet show clinical signs of dementia," added co-author James Brewer, MD, PhD, an associate professor of radiology and neurosciences at UC San Diego School of Medicine. "We do not have an animal model that works very well for studying this disease, so the ability to examine the dynamics of neurodegeneration in living humans is critical."

Nonetheless, the scientists say more research is needed. They note that CSF biomarkers provide only an indirect assessment of amyloid and neurofibrillary and may not fully reflect the underlying biological processes of AD.

"This study highlights the complex interaction of multiple pathologies that likely contribute to the clinical symptomatology of ," said co-author Reisa Sperling, MD, a neurologist at Massachusetts General Hospital and Brigham and Women's Hospital. "It suggests we may be able to intervene in the preclinical stages of AD before there is significant neurodegeneration and perhaps prevent the onset of symptoms."

Explore further: Changes seen in cerebrospinal fluid levels before onset of Alzheimer dementia

Related Stories

Changes seen in cerebrospinal fluid levels before onset of Alzheimer dementia

January 2, 2012
Cerebrospinal fluid levels of Aβ42 appear to be decreased at least five to 10 years before some patients with mild cognitive impairment develop Alzheimer disease (AD) dementia whereas other spinal fluid levels seem to ...

Study examines immunotherapy and cerebrospinal fluid biomarkers in patients with Alzheimer's disease

April 2, 2012
Immunotherapy with the antibody bapineuzumab in patients with mild to moderate Alzheimer disease resulted in decreases in a cerebrospinal fluid biomarker, which may indicate downstream effects on the degenerative process, ...

New hope for treating Alzheimer's Disease: A role for the FKBP52 protein

March 20, 2012
New research in humans published today reveals that the so-called FKBP52 protein may prevent the Tau protein from turning pathogenic. This may prove significant for the development of new Alzheimer's drugs and for detecting ...

Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology

June 28, 2011
Increasingly, researchers are suggesting that amyloid plaques and neurofibrillary tangles may be relatively late manifestations in the course of Alzheimer's disease (AD) pathology. Identifying earlier events in the development ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.