DNA from heart's own cells plays role in heart failure by mistakenly activating immune system

April 25, 2012, King's College London

DNA from the heart's own cells plays a role in heart failure by mistakenly activating the body's immune system, according to a study by British and Japanese researchers, co-funded by the British Heart Foundation (BHF). Scientists from King's College London and Osaka University Medical School in Japan showed that during heart failure – a debilitating condition affecting 750,000 people in the UK – this 'rogue DNA' can kick start the body's natural response to infection, contributing to the process of heart failure.

During immune cells invade the heart, a process called inflammation. The process makes heart muscle less efficient, reducing its ability to pump blood around the body. Inflammation is usually only activated when the body is facing a threat, such as an infection by a bacteria or virus.

The study, to be published today in the journal Nature, shows in mice that inflammation in the heart can be caused by the body's own DNA. The DNA escapes when a natural process to break down damaged cell components, called autophagy, becomes less efficient. Autophagy can stop working correctly when cells are under stress, such as during heart failure.

The problem DNA comes from energy-generating structures in heart cells, called mitochondria. Mitochondrial DNA triggers inflammation because it resembles DNA from bacteria, triggering a receptor in immune cells called Toll-like Receptor 9 (TLR9).

Mitochondria fascinate scientists because they seem to have evolved from bacteria more than 1.5 billion years ago, when primitive forms of life recruited bacteria to help them produce their energy. Although this pact with bacteria is one of evolution's success stories, this study shows that the human immune system still recognises the bacterial fingerprint in mitochondrial DNA, triggering a response from the immune system.

Professor Kinya Otsu, recently announced as BHF Professor of Cardiology at King's College London, who led the study, said: 'When mitochondria are damaged by stress, such as during heart failure, they become a problem because their DNA still retains an ancient bacterial fingerprint that mobilises the body's defences.

'We previously showed that damaged mitochondria build-up during heart failure, when the natural processes of cell breakdown become less effective. Now we've shown that the DNA fingerprint that we retain in our mitochondria causes our own immune system to turn against us.'

Dr Shannon Amoils, Research Advisor at the BHF, said: 'This intriguing discovery is an important breakthrough in our understanding of why, during heart failure, the becomes activated without the presence of any obvious external threat. This inflammation in the heart plays an important role in the disease process.

'Heart are packed with mitochondria, which provide the power the heart needs to pump blood around the body, and this study shows that, during heart failure, from these mitochondria at least partly causes the problem. This research points towards new avenues of exploration that could hopefully lead to treatments for heart failure in the future.'

Professor Kinya Otsu was recently awarded more than £3 million by the BHF to carry out his pioneering work.

Explore further: Scientists identify genetic link for a 'heavy heart'

More information: Takafumi Oka et al (2012). Nature. Mitochondrial DNA That Escapes from Autophagy Causes Inflammation and Heart Failure. doi:10.1038/nature10992

Related Stories

Scientists identify genetic link for a 'heavy heart'

October 5, 2011
(Medical Xpress) -- An international research team led by Imperial College London has for the first time pinpointed a single gene associated with one of the leading causes of heart thickening and failure.

Heart failure's effects in cells can be reversed with a rest

April 2, 2012
Structural changes in heart muscle cells after heart failure can be reversed by allowing the heart to rest, according to research at Imperial College London. Findings from a study in rats published today in the European Journal ...

Pain could be a good thing for heart attack patients

April 17, 2012
Feeling the pain of a heart attack could actually help the heart minimise damage, say academics in the University of Bristol's School of Clinical Sciences.

Taking vitamin E does not impact women's heart failure risk

March 20, 2012
Taking vitamin E supplements does not increase or decrease heart failure risk among women, according to a study in Circulation: Heart Failure, an American Heart Association journal.

Recommended for you

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.