New genetic mechanism of immune deficiency discovered

April 20, 2012

Researchers at National Jewish Health have discovered a novel genetic mechanism of immune deficiency. Magdalena M. Gorska, MD, PhD, and Rafeul Alam, MD, PhD, identified a mutation in Unc119 that causes immunodeficiency known as idiopathic CD4 lymphopenia. Unc119 is a signaling protein that activates and induces T cell proliferation.

The mutation impairs Unc119 ability to activate . Dr. Gorska, will present her findings April 20 at Translational Science 2012, an NIH-funded conference in Washington D.C.

"A better understanding of the molecular mechanisms associated with this mutation will improve diagnosis and pave the way for development of new therapies," said Dr. Gorska.

Drs. Gorska and Alam previously published their findings in the journal Blood and Dr. Gorska delivered a Presidential Plenary on the topic at the annual meeting of the American Academy of Allergy & Immunology.

Nearly a decade ago Drs. Alam and Gorska identified Unc119 as a novel activator of SRC-type tyrosine kinases, important regulators of cellular function. Since then, they have published numerous papers where they characterized the function of this protein in various aspects of the immune system. Idiopathic CD4 lymphopenia is a rare and heterogeneous syndrome defined by low levels of CD4 T cells in the absence of HIV infection, which predisposes patients to infections and malignancies. Recent research by others had linked the syndrome to reduced activation of the SRC-type kinase known as Lck. The latter kinase is involved in T cell development, activation and proliferation.

So, Drs. Alam and Gorska thought Unc119, an activator of Lck, might be involved. They kept an eye out for patients with CD4 lymphopenia coming to National Jewish Health, which specializes in immune-related disorders as well as respiratory and cardiac diseases. They identified three patients with CD4 lymphopenia, then sequenced their Unc119 gene as well as the Unc119 gene in several patients who suffered low CD4 T cell counts as a result of other conditions.

One of the three patients, a 32-year-old woman with a history of recurrent infections, had a missense mutation in her Unc119 gene. The same mutation was not present in other lymphopenia patients nor in any genetic database.

The researchers then performed several studies with the woman's blood cells, to understand the mutation's effect. They introduced the mutated gene into normal T cells and examined the outcome. The mutation prevents Lck activation and its downstream signaling. It also reduces the amount of Lck found near the plasma membrane, where it plays a major role in propagating signals from the T-cell receptor. Proliferation of T cells, which normally occurs on stimulation of T-cell receptors, was profoundly reduced in cells from the patient.

"Since we originally published our findings earlier this year, we have received inquiries from many physicians with lymphopenia subjects," said Dr. Alam. "Working with them, we expect to find several more patients with this novel mutation, which should help us better understand its effect, improve diagnosis and possibly find therapies."

At this point there is no treatment for caused by this mutation other than close monitoring of the patient and treatment of resulting infections and malignancies.

Explore further: New memory for HIV patients

Related Stories

New memory for HIV patients

March 26, 2012
The hallmark loss of helper CD4+ T cells during human immunodeficiency virus (HIV) infection may be a red herring for therapeutics, according to a study published on March 26th in the Journal of Experimental Medicine.

Genetic mutation leads to cold allergy, immune deficiency and autoimmunity

January 11, 2012
Investigators at the National Institutes of Health have identified a genetic mutation in three unrelated families that causes a rare immune disorder characterized by excessive and impaired immune function. Symptoms of this ...

Recommended for you

The immune cells that help tumors instead of destroying them

December 12, 2017
Lung cancer is the leading cause of cancer-associated deaths. One of the most promising ways to treat it is by immunotherapy, a strategy that turns the patient's immune system against the tumor. In the past twenty years, ...

Cancer gene plays key role in cystic fibrosis lung infections

December 12, 2017
PTEN is best known as a tumor suppressor, a type of protein that protects cells from growing uncontrollably and becoming cancerous. But according to a new study from Columbia University Medical Center (CUMC), PTEN has a second, ...

Researchers bring new insight into Chediak-Higashi syndrome, a devastating genetic disease

December 12, 2017
A team of researchers from the National Institutes of Health and University of Manchester have uncovered new insights into a rare genetic disease, with less than 500 cases of the disease on record, which devastates the lives ...

Drug increases speed, safety of treatment for multiple food allergies

December 11, 2017
In a randomized, controlled phase-2 clinical trial, an asthma medication increased the speed and safety of a protocol used to treat children for several food allergies at once, according to a study by researchers at the Stanford ...

Immunotherapy drug nearly eliminates severe acute graft-versus-host disease

December 9, 2017
Results from a phase 2 clinical trial, presented by Seattle Children's Research Institute at the 59th American Society of Hematology (ASH) Annual Meeting, show that the drug Abatacept (Orencia) nearly eliminated life-threatening ...

Location, location, location: Immunization delivery site matters

December 1, 2017
In vaccination, a certain subpopulation of dendritic cells is vital to triggering the body's adaptive immune system, report researchers at The Jackson Laboratory (JAX), Yale University and Astra-Zeneca.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.