Team announces breakthrough for degenerative vision disorder

April 23, 2012

A research team, led by John Guy, M.D., professor of ophthalmology at Bascom Palmer Eye Institute of the University of Miami Miller School of Medicine, has pioneered a novel technological treatment for Leber Hereditary Optic Neuropathy (LHON), an inherited genetic defect that causes rapid, permanent, and bilateral loss of vision in people of all ages, but primarily males ages 20-40. Genetic mutations in the mitochondria (part of the cell that produces energy) cause the disorder. Currently, there is no cure for LHON.

However, Guy and his team have successfully modified a virus and used it to introduce healthy genes into the mitochondria to correct the . Using experimental models, they have proven that it is both safe and effective to replace mutated genes with healthy ones and that doing so prevents deterioration of the that form the optic nerve. This research demonstrates that when efficiently introduced into mitochondria, normal DNA can correct a biochemical defect in cellular energy production and restore visual function.

"A wide range of other factors, including aging, cancer, and Parkinson's disease, are also caused by mutations in the mitochondria," said Dr. Guy. "This new approach shows the vast potential for genetic-therapy applications, while helping to address a significant cause of blindness."

The healthy genes were delivered into the mitochondria via an innovative viral delivery system. Specifically, Guy redirected the adeno-associated virus (a small virus that infects humans but is not known to cause disease) to the mitochondria rather than to its typical target, the nucleus, where most genes are housed within the cell. He did so via a mitochondrial-targeting sequence (a peptide chain that directs the transport of a protein). This permitted the replacement of the defective mitochondrial gene with a healthy one, which then restored energy production to the affected ocular cells. Two National Institutes of Health/National Eye Institute grants, totaling $6.1 million funded this research, which began in 2007.

"Other research studies have shown that LHON patients who have lost their vision still have some sensitivity to light," said Guy. "This indicated that if you can restore the functioning of those cells through , those patients could see again." In conjunction with his research, Guy explored why only about 50 percent of patients with the genetic mutation develop LHON, while others do not.

Known for exploring gene therapy as a potential treatment for diseases of the , Guy holds several patents related to mitochondrial gene therapy biotechnology. His next steps will be to investigate incorporating all three genes that cause LHON into a single viral carrier and hopefully receive FDA approval to inject therapeutic genes into patients who have visual loss from mitochondrial disease.

On April 20, 2012, Proceedings of the National Academy of Sciences (PNAS) published an article by Guy about this recent breakthrough.

Explore further: Researchers study and develop approach to treat mitochondrial disorders

Related Stories

Researchers study and develop approach to treat mitochondrial disorders

April 3, 2012
(Medical Xpress) -- Within each of our cells are a number of organelles governing operations – making sure we function as smoothly as possible. But one slip on the molecular level could mean disaster.

Genetic map reveals clues to degenerative diseases

August 24, 2011
An international research team, spearheaded by Dr. Tim Mercer from The University of Queensland's Institute for Molecular Bioscience (IMB), has unlocked the blueprints to the ‘power plants' of the cell in an effort that ...

Why do neurons die in Parkinson's disease?

November 10, 2011
Current thinking about Parkinson's disease is that it's a disorder of mitochondria, the energy-producing organelles inside cells, causing neurons in the brain's substantia nigra to die or become impaired. A study from Children's ...

Study finds how to correct human mitochondrial mutations

March 12, 2012
Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial ...

Recommended for you

Newly published research provides new insight into how diabetes leads to retinopathy

December 7, 2017
An international team of scientists led by Professor Ingrid Fleming of Goethe University, Frankfurt, Germany, and including Professor Bruce Hammock of the University of California, Davis, provides new insight into the mechanism ...

Researchers use breakthrough technology to understand eclipse eye damage

December 7, 2017
In a first-of-its-kind study, Mount Sinai researchers are using adaptive optics (AO) to analyze retinal eye damage from the August solar eclipse on a cellular level. The research could help doctors develop a deeper understanding ...

Combating eye injuries with a reversible superglue seal

December 6, 2017
When a soldier sustains a traumatic eye injury on the battlefield, any delay in treatment may lead to permanent vision loss. With medical facilities potentially far away and no existing tools to prevent deterioration, medics ...

Trigger for most common form of vision loss discovered

November 27, 2017
In a major step forward in the battle against macular degeneration, the leading cause of vision loss among the elderly, researchers at the University of Virginia School of Medicine have discovered a critical trigger for the ...

Scientists engineer drug delivery device that treats glaucoma directly inside the eye

November 23, 2017
Glaucoma, which affects over 60 million people worldwide, can seem easy to treat: medicated eye drops can be used to ease the buildup of fluid in the eye that underlies the condition. If glaucoma is caught early, eye drops ...

Research reveals biological mechanism of a leading cause of childhood blindness

November 16, 2017
Scientists at the Virginia Tech Carilion Research Institute (VTCRI) have revealed the pathology of cells and structures stricken by optic nerve hypoplasia, a leading cause of childhood blindness in developed nations.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.