Virtual slides reveal disease in 3D

April 23, 2012

(Medical Xpress) -- Computing experts and medical researchers at the University of Leeds have developed a fast, easy-to-use way of studying tissue samples in 3D using ‘virtual’ microscope slides.

The novel digital scanning system produces high-resolution, multicoloured images that can be rotated and examined from any angle.

The new approach is revealing more information about disease processes - information that could be used in future to develop new therapies or explain why conventional treatments are not working. Such 3D views of tissue samples may also eventually play a role in clinical practice, as medical imaging technology provides even higher resolution images of tissue.

Digital 3D reconstruction of tissue has many uses in biological and medical research. Viewing tissue in 3D allows researchers to study its shape in ways that would not be possible with conventional methods. For example, a biologist may want to study the structure of developing organs, a cancer specialist may study the branching of supplying a tumour, or a liver specialist may need to understand how this vital organ reacts to damage caused by hepatitis C. All of these require an understanding of the shape of the tissue in three dimensions.

At the moment, hospital pathologists and cut tissue samples into ultra-thin slices and examine these by hand, one-by-one, on a microscope. This is a fairly labour-intensive process - a single slide can contain several hundred thousand cells - and the number of slices examined will be limited by the time available. To do a true 3D analysis, users would need to look at 100s of different 2D sections - something that would be prohibitively expensive by hand.

In contrast, the system developed at the University of Leeds requires almost no extra manual input once the tissue has been cut and mounted onto glass slides. An automated system turns batches of the slides into high-resolution digital images, which are then aligned using image registration software. Users can then study these virtual blocks of tissue in 3D and zoom in on particular areas of interest.

The researchers have now tested the system on eight different types of tissue, using more than 13000 virtual slides to create around 400 separate 3D volumes. The system and selected case studies, including examples of liver disease, cancer and embryology, are described in the May issue of the American Journal of Pathology.

"Up until now, the use of 3D imaging technology to study disease has been limited because of low resolution, and the time and difficulty associated with acquiring large numbers of images with a microscope," said lead investigator Dr. Darren Treanor, pathologist at the University of Leeds and the Leeds Teaching Hospitals NHS Trust.  "Our virtual system means that users can look at the shape and structure of cells and the 'micro-architecture' of blood vessels and tumours on large .  This can all be done without input from computing specialists."

"Having a 3D view can often make a real difference," said Dr Derek Magee, from the University of Leeds' School of Computing who developed the software behind the system. "For instance, if you want to understand how a system of blood vessels supplying a tumour connects up, you really need to see that in 3D, not as a series of separate 2D sections."

The work was funded by the National Cancer Research Institute informatics initiative, Leeds Teaching Hospital Trust Research and Development, National Institute for Health Research, West Yorkshire Comprehensive Local Research Network, and UK Department of Health.

Explore further: New software opens the door to wider use of 3-D imaging in the study of disease

More information: "Towards Routine Use of 3D Histopathology As a Research Tool," by N. Roberts, et al. (DOI: dx.doi.org/10.1016/j.ajpath.2012.01.033) will appear in the American Journal of Pathology, Volume 180, Issue 5 (May 2012).

Related Stories

New software opens the door to wider use of 3-D imaging in the study of disease

April 16, 2012
Researchers have developed a novel, easy-to-use system for three-dimensional (3D) reconstruction and examination of tissues at microscopic resolution, with the potential to significantly enhance the study of normal and disease ...

3D Anatomy online: one step closer to the real thing?

May 16, 2011
(Medical Xpress) -- Learning anatomy online is to benefit from a new tool using the latest technology, which allows users to see real specimens in high-definition 3D.

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.