Blocking DNA: HDAC inhibitor targets triple negative breast cancer

May 21, 2012

The histone de-acetylase (HDAC) inhibitor panobinostat is able to target and destroy triple negative breast cancer, reveals a new study published in BioMed Central's open access journal Breast Cancer Research. Researchers from Tulane University Health Sciences Center have shown that panobinostat was able to destroy breast cancer cells and reduce tumor growth in mice.

Approximately 15% of breast cancers are found at diagnosis to be triple negative. These aggressive tumours are missing both the estrogen receptor and , which means that they do not respond to hormonal therapies such as antiestrogens or . They also test negative for the growth factor receptor HER2 and cannot be treated with monoclonal therapy such as Herceptin, so there is a desperate need for treatment options to complement surgery and chemotherapy.

Whether DNA is active or not in cells is tightly controlled. DNA in the nucleus is wound around histones and effectively shut down. When a gene is required the cell acetylates the histone, relaxing the tight control over DNA and allowing the cells machinery access to the gene, eventually leading to protein production.

HDACs have the opposite effect and reduce DNA activity. Aberrant HDACs are possibly responsible for the lack of production of normal cellular controls which allow the uncontrolled growth of cancer cells. The researchers from New Orleans hoped that by blocking HDACs they could restore normal cell function.

The HDAC inhibitor panobinostat was able to increase histone acetylation in triple negative cell lines. There was also a concurrent decrease in cell division and increase in apoptosis (). Additionally, a marked increase in the epithelial cell marker E-cadherin was observed, indicative of a less aggressive cell type.

Dr. Bridgette Collins-Burow, who led the study, described the results, "Panobinostat selectively targeted triple negative and decreased tumor growth in mice. It was also able to partially reverse the morphological changes in cells to a more epithelial type. These results show a potential therapeutic role for HDAC inhibitors, especially panobinostat, in targeting the aggressive triple negative breast cancer."

Explore further: Breaking the backbone of triple-negative breast cancers

More information: Targeting triple-negative breast cancer cells with the HDAC inhibitor Panobinostat, Chandra R Tate, Lyndsay V Rhodes, H Chris Segar, Jennifer L Driver, F Nell Pounder, Matthew E Burow and Bridgette M Collins-Burow, Breast Cancer Research (in press)

Related Stories

Breaking the backbone of triple-negative breast cancers

March 19, 2012
Putting the brakes on an abundant growth-promoting protein causes breast tumors to regress, according to a study published on March 19th in the Journal of Experimental Medicine.

New study shows promise for developing new treatments for breast cancer

March 14, 2012
A new study by University of Kentucky researchers provides insight into developing new treatment strategies for basal-like breast cancer, commonly known as triple-negative breast cancer. This cancer is associated with early ...

Novel technique switches triple-negative breast cancer cells to hormone-receptor positive cells

November 1, 2011
Within many hormone-receptor positive breast cancers lives a subpopulation of receptor-negative cells – knock down the hormone-receptor positive cells with anti-estrogen drugs and you may inadvertently promote tumor ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.