Boundary stops molecule right where it needs to be

May 24, 2012, Baylor College of Medicine

A molecule responsible for the proper formation of a key portion of the nervous system finds its way to the proper place not because it is actively recruited, but instead because it can't go anywhere else.

Researchers at Baylor College of Medicine have identified a distal axonal as the boundary that makes sure AnkyrinG clusters where it needs to so it can perform properly.

The findings appear in the current edition of Cell.

"It has been known that AnkyrinG is needed for the axon initial segment to form. Without the axon initial segment there would be no output of information within the ," said Dr. Matthew Rasband, associate professor of neuroscience at BCM. "Every known found at the axon initial segment depends on AnkyrinG, so if it is eliminated then the axon initial segment doesn't form and the neuron doesn't fire."

To answer the question of how AnkyrinG gets to where it needs to be for proper function, Rasband, along with first author Dr. Mauricio Galiano, postdoctoral associate in at BCM, and colleagues, began by analyzing how the axon initial segment forms. They found that AnkyrinG always appeared in exactly the same spot during development.

"It would start to enter into the axon and then it was almost as if it hit a wall and couldn't go any further," Rasband said. "We would see it stop very close to the cell body and then it would backfill. This showed us that there was some type of boundary or barrier marking that area."

To further study the properties of the boundary they began to look at ways they could disrupt or move it to test the effects of AnkyrinG clustering in different areas.

In mouse models they were able to move the boundary to different distances along the axon. Doing this allowed researchers to change the length of the axon initial segment. If the boundary was farther away from the cell body than the length of the segment was longer. If it was closer to the cell body, then the length was shorter.

When researchers removed the boundary all together, AnkyrinG would not cluster in the appropriate area and the axon initial segment would not form.

"We had anticipated there was a kind of molecule that recruited AnkyrinG but instead we found a barrier that excludes it," Rasband said. "These results have important implications because they imply a similar exclusion mechanism might be in play or functioning not only at the axon initial segment, but all of the places where AnkyrinG is found."

Rasband said within many disorders like autism or epilepsy proteins that AnkyrinG is responsible for forming are disrupted. So understanding how this molecule functions properly could one day play a role in finding treatment targets for diseases.

Explore further: Researchers uncover a new piece of the puzzle in the development of our nervous system

Related Stories

Researchers uncover a new piece of the puzzle in the development of our nervous system

July 14, 2011
Researchers at the Institut de recherches cliniques de Montréal (IRCM) are among the many scientists around the world trying to unearth our nervous system's countless mysteries. Dr. Artur Kania, Director of the IRCM's ...

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.