The cells' petrol pump is finally identified

May 24, 2012

The oxygen and food we consume are converted into energy by tiny organelles present in each cell, the mitochondria. These 'power plants' must be continuously supplied with fuel, to maintain all vital functions. A team led by Jean-Claude Martinou, professor at the University of Geneva, has identified this fuel's carrier, baptized Mitochondrial Pyruvate Carrier. The study, published online by Science, henceforth allows the researchers to investigate how the activity of the carrier is modulated.

Our cells breathe and digest, as does the organism as a whole. They indeed use oxygen to draw the energy contained in the nutrients they ingest, before discarding the waste, as carbon dioxide and water. Glucose is a preferred nutrient for the cells. Its digestion occurs in the cytoplasm, in the absence of oxygen, and leads to the formation of pyruvate and a small amount of energy. Pyruvate is then carried into mitochondria, the cell's , for a complete burning, thus providing a maximal energetic yield.

'As opposed to healthy cells, tumor cells produce the energy they need mainly in the cytoplasm. For reasons that are still misunderstood, they have little use for their mitochondria', notes Jean-Claude Martinou, professor at the University of Geneva, Switzerland. However, don't seem to lack energy. They compensate the low energetic yield by an increased consumption of glucose. This strategy allows them to do without oxygen, to a large extent. By short-cutting the mitochondria, these cells would thus escape from the deleterious effects of , such as , produced during the , within the power plants.

'Biologists have been attempting for more than thirty years to understand how pyruvate is transferred from the cytoplasm to the interior of the mitochondrion. We finally identified the carrier, which was named Mitochondrial Pyruvate Carrier, abbreviated MPC», details Sébastien Herzig, researcher at the Department of cell biology of the University of Geneva and first author of the article.

MCP is a universal carrier, which is almost identical from yeast to human. 'From now on, we will be able to study how the cells can modulate the activity of this carrier, according to their needs in energy', explains Jean-Claude Martinou. The next challenge will be to find a way to force the mitochondria of to function normally, by stimulating pyruvate transport towards the interior of these power plants.

Explore further: New mitochondria mechanism identified

Related Stories

New mitochondria mechanism identified

September 27, 2011
A team of researchers led by the University of Freiburg in Germany has identified a novel mechanism that plays a key role in the architecture and functioning of mitochondria - the power plants of the cell, giving cells the ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.