Drug kills cancer cells by restoring faulty tumor suppressor

May 14, 2012

A new study describes a compound that selectively kills cancer cells by restoring the structure and function of one of the most commonly mutated proteins in human cancer, the "tumor suppressor" p53. The research, published by Cell Press in the May 15th issue of the journal Cancer Cell, uses a novel, computer based strategy to identify potential anti-cancer drugs, including one that targets the third most common p53 mutation in human cancer, p53-R175H. The number of new cancer patients harboring this mutation in the United States who would potentially benefit from this drug is estimated to be 30,000 annually.

P53 recognizes cellular stress and either puts the brakes on , or kills the cell if the damage is irreparable. The gene encoding p53 is mutated in over half of human cancers, and loss of p53 function has been linked to many aspects of cancer including aggressiveness, metastasis and poor response to chemotherapy and radiation. "Restoring the function of mutant p53 with a drug has long been recognized as an attractive cancer therapeutic strategy," explains senior study author, Dr. Darren R. Carpizo, from The Cancer Institute of New Jersey. "However, it has proven difficult to find compounds that restore the lost function of a defective tumor-suppressor."

Dr. Alexei Vazquez, a co-author of the study, developed a computer based screening method to identify compounds that target tumor cells with , but not cells with normal p53. The screening method was unique because it involved with diverse , a model that recapitulates what is seen in actual human cancers. This method identified several compounds that killed cancer cells containing mutant p53. One of the compounds did so by restoring the structure and function of the p53-R175H mutant. The researchers went on describe the details of the reactivation mechanism and showed that normal cells were not impacted by the compound.

In addition to identifying a compound for selectively restoring the function of the p53-R175H mutant, the findings also support the development of rationally targeted cancer therapies. "Anti-cancer drug development is moving in the direction of "personalized medicine" in which the drugs are chosen based on the molecular pathways that are deranged in an individual patient's tumor," concludes Dr. Carpizo. "Our findings support the growing trend in developmental therapeutics in which the efficacy of future will depend upon the knowledge of the patient's tumor genotype."

Explore further: New drug shrinks cancer in animals, study shows

More information: Yu et al.: "Allele Specific p53 Mutant Reactivation." DOI:10.1016/j.ccr.2012.03.042

Related Stories

New drug shrinks cancer in animals, study shows

April 6, 2011
A study led by researchers at the University of Michigan Comprehensive Cancer Center showed in animal studies that new cancer drug compounds they developed shrank tumors, with few side effects.

Why cholesterol-lowering statins might treat cancer

January 19, 2012
Cholesterol-lowering statins seem to keep breast cancer at bay in some patients. Now researchers reporting in the January 20th issue of the journal Cell, a Cell Press publication, provide clues about how statins might yield ...

Recommended for you

Soy, cruciferous vegetables associated with fewer common breast cancer treatment side effects

December 11, 2017
Consuming soy foods (such as soy milk, tofu and edamame) and cruciferous vegetables (such as cabbages, kale, collard greens, bok choy, Brussels sprouts, and broccoli) may be associated with a reduction in common side effects ...

CAR T, immunotherapy bring new hope for multiple myeloma patients

December 11, 2017
Two investigational immunotherapy approaches, including chimeric antigen receptor (CAR) T cell therapy, have shown encouraging results in the treatment of multiple myeloma patients who had relapsed and were resistant to other ...

Tracking how multiple myeloma evolves by sequencing DNA in the blood

December 10, 2017
Although people with multiple myeloma usually respond well to treatment, the blood cancer generally keeps coming back. Following genetic changes in how the disease evolves over time will help to understand the disease and, ...

Landmark CAR-T cancer study published

December 10, 2017
Loyola University Medical Center is the only Chicago center that participated in the pivotal clinical trial of a groundbreaking cancer treatment that genetically engineers a patient's immune system to attack cancer cells.

Study finds emojis promising tool for tracking cancer patients' quality of life

December 10, 2017
In findings presented to the American Society of Hematology, Mayo Clinic researchers found that using emojis instead of traditional emotional scales were helpful in assessing patients' physical, emotional and overall quality ...

Study explores use of checkpoint inhibitors after relapse from donor stem cell transplant

December 10, 2017
Immunotherapy agents known as checkpoint inhibitors have shown considerable promise in patients with hematologic cancers who relapse after a transplant with donor stem cells. Preliminary results from the first clinical trial ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.