Drug kills cancer cells by restoring faulty tumor suppressor

May 14, 2012

A new study describes a compound that selectively kills cancer cells by restoring the structure and function of one of the most commonly mutated proteins in human cancer, the "tumor suppressor" p53. The research, published by Cell Press in the May 15th issue of the journal Cancer Cell, uses a novel, computer based strategy to identify potential anti-cancer drugs, including one that targets the third most common p53 mutation in human cancer, p53-R175H. The number of new cancer patients harboring this mutation in the United States who would potentially benefit from this drug is estimated to be 30,000 annually.

P53 recognizes cellular stress and either puts the brakes on , or kills the cell if the damage is irreparable. The gene encoding p53 is mutated in over half of human cancers, and loss of p53 function has been linked to many aspects of cancer including aggressiveness, metastasis and poor response to chemotherapy and radiation. "Restoring the function of mutant p53 with a drug has long been recognized as an attractive cancer therapeutic strategy," explains senior study author, Dr. Darren R. Carpizo, from The Cancer Institute of New Jersey. "However, it has proven difficult to find compounds that restore the lost function of a defective tumor-suppressor."

Dr. Alexei Vazquez, a co-author of the study, developed a computer based screening method to identify compounds that target tumor cells with , but not cells with normal p53. The screening method was unique because it involved with diverse , a model that recapitulates what is seen in actual human cancers. This method identified several compounds that killed cancer cells containing mutant p53. One of the compounds did so by restoring the structure and function of the p53-R175H mutant. The researchers went on describe the details of the reactivation mechanism and showed that normal cells were not impacted by the compound.

In addition to identifying a compound for selectively restoring the function of the p53-R175H mutant, the findings also support the development of rationally targeted cancer therapies. "Anti-cancer drug development is moving in the direction of "personalized medicine" in which the drugs are chosen based on the molecular pathways that are deranged in an individual patient's tumor," concludes Dr. Carpizo. "Our findings support the growing trend in developmental therapeutics in which the efficacy of future will depend upon the knowledge of the patient's tumor genotype."

Explore further: New drug shrinks cancer in animals, study shows

More information: Yu et al.: "Allele Specific p53 Mutant Reactivation." DOI:10.1016/j.ccr.2012.03.042

Related Stories

New drug shrinks cancer in animals, study shows

April 6, 2011
A study led by researchers at the University of Michigan Comprehensive Cancer Center showed in animal studies that new cancer drug compounds they developed shrank tumors, with few side effects.

Why cholesterol-lowering statins might treat cancer

January 19, 2012
Cholesterol-lowering statins seem to keep breast cancer at bay in some patients. Now researchers reporting in the January 20th issue of the journal Cell, a Cell Press publication, provide clues about how statins might yield ...

Recommended for you

Bolstering fat cells offers potential new leukemia treatment

October 16, 2017
Killing cancer cells indirectly by powering up fat cells in the bone marrow could help acute myeloid leukemia patients, according to a new study from McMaster University.

Study reveals complex biology, gender differences, in kidney cancer

October 13, 2017
A new study is believed to be the first to describe the unique role of androgens in kidney cancer, and it suggests that a new approach to treatment, targeting the androgen receptor (AR), is worth further investigation.

Cholesterol byproduct hijacks immune cells, lets breast cancer spread

October 12, 2017
High cholesterol levels have been associated with breast cancer spreading to other sites in the body, but doctors and researchers don't know the cause for the link. A new study by University of Illinois researchers found ...

New drug hope for rare bone cancer patients

October 12, 2017
Patients with a rare bone cancer of the skull and spine - chordoma - could be helped by existing drugs, suggest scientists from the Wellcome Trust Sanger Institute, University College London Cancer Institute and the Royal ...

Scientists pinpoint surprising origin of melanoma

October 12, 2017
Led by Jean-Christophe Marine (VIB-KU Leuven), a team of researchers has tracked down the cellular origin of cutaneous melanoma, the deadliest form of skin cancer. The team was surprised to observe that these very aggressive ...

Team finds a potentially better way to treat liver cancer

October 12, 2017
A Keck School of Medicine of USC research team has identified how cancer stem cells survive. This finding may one day lead to new therapies for liver cancer, one of the few cancers in the United States with an incidence rate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.