Drug kills cancer cells by restoring faulty tumor suppressor

May 14, 2012

A new study describes a compound that selectively kills cancer cells by restoring the structure and function of one of the most commonly mutated proteins in human cancer, the "tumor suppressor" p53. The research, published by Cell Press in the May 15th issue of the journal Cancer Cell, uses a novel, computer based strategy to identify potential anti-cancer drugs, including one that targets the third most common p53 mutation in human cancer, p53-R175H. The number of new cancer patients harboring this mutation in the United States who would potentially benefit from this drug is estimated to be 30,000 annually.

P53 recognizes cellular stress and either puts the brakes on , or kills the cell if the damage is irreparable. The gene encoding p53 is mutated in over half of human cancers, and loss of p53 function has been linked to many aspects of cancer including aggressiveness, metastasis and poor response to chemotherapy and radiation. "Restoring the function of mutant p53 with a drug has long been recognized as an attractive cancer therapeutic strategy," explains senior study author, Dr. Darren R. Carpizo, from The Cancer Institute of New Jersey. "However, it has proven difficult to find compounds that restore the lost function of a defective tumor-suppressor."

Dr. Alexei Vazquez, a co-author of the study, developed a computer based screening method to identify compounds that target tumor cells with , but not cells with normal p53. The screening method was unique because it involved with diverse , a model that recapitulates what is seen in actual human cancers. This method identified several compounds that killed cancer cells containing mutant p53. One of the compounds did so by restoring the structure and function of the p53-R175H mutant. The researchers went on describe the details of the reactivation mechanism and showed that normal cells were not impacted by the compound.

In addition to identifying a compound for selectively restoring the function of the p53-R175H mutant, the findings also support the development of rationally targeted cancer therapies. "Anti-cancer drug development is moving in the direction of "personalized medicine" in which the drugs are chosen based on the molecular pathways that are deranged in an individual patient's tumor," concludes Dr. Carpizo. "Our findings support the growing trend in developmental therapeutics in which the efficacy of future will depend upon the knowledge of the patient's tumor genotype."

Explore further: New drug shrinks cancer in animals, study shows

More information: Yu et al.: "Allele Specific p53 Mutant Reactivation." DOI:10.1016/j.ccr.2012.03.042

Related Stories

New drug shrinks cancer in animals, study shows

April 6, 2011
A study led by researchers at the University of Michigan Comprehensive Cancer Center showed in animal studies that new cancer drug compounds they developed shrank tumors, with few side effects.

Why cholesterol-lowering statins might treat cancer

January 19, 2012
Cholesterol-lowering statins seem to keep breast cancer at bay in some patients. Now researchers reporting in the January 20th issue of the journal Cell, a Cell Press publication, provide clues about how statins might yield ...

Recommended for you

Team identifies a switch that may help target dormant cancer cells

September 26, 2017
A study by scientists at the University of Arizona and the University of Pittsburgh may hold the key to targeting dormant—or inactive —cancer cells, which are resistant to chemotherapy and other treatments. The results ...

Researchers discover how enzyme 'shape-shifts' in drug-resistant leukemia

September 26, 2017
St. Jude Children's Research Hospital structural biologists have deciphered how the structure of the enzyme called Abl regulates its activity, enabling the enzyme to switch itself on and off. Understanding Abl's regulation ...

Powerful drug combo gangs up to tackle triple-negative breast cancer

September 26, 2017
In the hunt for novel treatments against an aggressive form of breast cancer, researchers combined a new protein inhibitor with a chemotherapy drug to create a powerful combination that resulted in cancer cell death.

Researchers identify gene variants linked to a high-risk children's cancer

September 25, 2017
Pediatric researchers investigating the childhood cancer neuroblastoma have identified common gene variants that raise the risk of an aggressive form of that disease. The discovery may assist doctors in better diagnosing ...

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Prostaglandin E1 inhibits leukemia stem cells

September 25, 2017
Two drugs, already approved for safe use in people, may be able to improve therapy for chronic myeloid leukemia (CML), a blood cancer that affects myeloid cells, according to results from a University of Iowa study in mice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.