Early biomarker for pancreatic cancer identified

May 15, 2012

Researchers at the University of California, San Diego School of Medicine and Moores Cancer Center have identified a new biomarker and therapeutic target for pancreatic cancer, an often-fatal disease for which there is currently no reliable method for early detection or therapeutic intervention. The paper will be published May 15 in Cancer Research.

Pancreatic ductal adenocarcinoma, or PDAC, is the fourth-leading cause of cancer-related death. Newly diagnosed patients have a median survival of less than one year, and a 5-year survival rate of only 3 to 5 percent. Therefore, biomarkers that can identify early onset of PDAC and which could be viable are desperately needed.

'"We found that a kinase called PEAK1 is turned on very early in pancreatic cancer," said first author Jonathan Kelber, PhD, a postdoctoral researcher in the UCSD Department of Pathology and Moores Cancer Center. "This protein was clearly detected in biopsies of from human patients – at the gene and the protein levels – as well as in mouse models."

PEAK1 is a type of tyrosine kinase – an enzyme, or type of protein, that speeds up chemical reactions and acts as an "on" or "off" switch in many cellular functions. The fact that PEAK1 expression is increased in human PDAC and that its catalytic activity is important for PDAC cell proliferation makes it an important candidate as a biomarker and for small molecule drug discovery.

In addition to showing that levels of PEAK1 are increased during PDAC progression, the scientists found that PEAK1 is necessary for the cancer to grow and metastasize.

"PEAK1 is a critical signaling hub, regulating cell migration and proliferation," said Kelber. "We found that if you knock it out in PDAC cells, they form significantly smaller tumors in preclinical mouse models and fail to metastasize efficiently."

The research team, led by principal investigator Richard Klemke, PhD, UCSD professor of pathology, studied a large, on-line data base of gene expression profiles to uncover the presence of PEAK1 in PDAC. These findings were corroborated at the protein level in patient biopsy samples from co-investigator Michael Bouvet, MD, and in mouse models developed by Andrew M. Lowy, MD, both of the UCSD Department of Surgery at Moores .

While many proteins are upregulated in cancers of the pancreas, there has been limited success in identifying candidates that, when inhibited, have potential as clinically approved therapeutics. However, the researchers found that inhibition of PEAK1-dependent signaling sensitized PDAC cells to existing chemotherapies such as Gemitabine, and immunotherapies such as Trastuzumab.

" for patients with pancreatic cancer remain low," said Bouvet. "Therefore, earlier detection and novel treatment strategies are very important if we are going to make any progress against pancreatic cancer. Since current therapies are often ineffective, our hope is that the findings from this research will open up a new line of investigation to bring a PEAK1 inhibitor to the clinic."

Explore further: Team pinpoints role of key protein in pancreatic ductal adenocarcinoma

Related Stories

Team pinpoints role of key protein in pancreatic ductal adenocarcinoma

May 11, 2011
A team based at North Carolina Central University (NCCU) and UNC Lineberger Comprehensive Cancer Center has established a connection between a known cancer gene called KRAS and a protein called Pim-1 kinase.

Researchers identify potential target to delay metastatic pancreatic cancer and prolong survival

December 21, 2011
Often, and without much warning, pancreatic cancer cells slip through the endothelial cells, head into the blood and out to other parts of the body to metastasize, making it one of the deadliest and hardest to treat cancers ...

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Birger
not rated yet May 15, 2012
I lost an aunt because of the "stealth" properties of pancreatic cancer.
I hope the elderly will one day get yearly screening for this and other cancer markers.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.