Whole genome sequencing of rare olfactory neuroblastoma

May 23, 2012

The Translational Genomics Research Institute (TGen) and the Virginia G. Piper Cancer Center at Scottsdale Healthcare have conducted whole genome sequencing (WGS) of a rare nasal tract cancer called olfactory neuroblastoma (ONB).

Analysis of the billions of molecules that make up the patient's normal DNA, and cancerous DNA, discovered that could be future targets of advanced precision-medicine drug development.

Results of the study appeared today in the on-line journal PLoS One.

"Currently, physicians have few choices when formulating a treatment plan for a patient with advanced , especially in cases of rare cancers," said Dr. Glen Weiss, the paper's lead author. He holds joint appointments at and at the Virginia G. Piper Clinical Trials, a partnership between Scottsdale Healthcare and TGen that treats with promising .

"There has been no comprehensive genomic sequencing study to identify mutation profiles of these rare ONB cancers in order to identify therapeutic targets for treating these patients," said Dr. Weiss, Director of Thoracic Oncology at the Virginia G. Piper Cancer Center, and a Clinical Associate Professor in TGen's Cancer and Division.

Personalized medicine involves precise drugs aimed at specific genetic targets intended to shrink, and even eliminate, tumors without the debilitating of conventional chemotherapies.

The study involved a 29-year-old man who presented at the Virginia G. Piper Cancer Center at Scottsdale Healthcare following years of standard-of-care treatment involving surgery, radiation and conventional . His metastatic ONB had continued to mutate and return, resulting in deforming lesions and extensive surgeries that required plastic reconstruction.

His biopsied tumor and blood were analyzed at TGen, which spelled out the billions of individual molecular bases in the DNA of the patient's tumor, and in his normal DNA. A comparison identified several significant gene mutations, including: MAP4K2, SIN3B, TAOK2, KDR, TP53, MYC, and NLRC4. These were selected based on clinical relevance and previously published literature on the target genes and their association with carcinogenesis, or the creation and evolution of cancer.

"The mutated target genes implicate aberrations in DNA repair mechanisms and apoptosis," said Dr. John Carpten, the paper's senior author. He is a Professor and Director of TGen's Integrated Cancer Genomics Division and Deputy Director of Research for TGen. "This work provides novel insights into the underpinnings of a rare but terrible form of cancer. Hopefully we can translate these findings into tools for improved clinical management of rare tumors such as this."

The paper cites the need for additional study of how the ONB cancer mutates and progresses, and how whole genome sequencing can play an important role in future analysis.

"With the reduction in cost, improvement in speed of analysis and with more complete understanding of complex genetic alterations, we anticipate that WGS will be applied in the clinic more frequently to common and and will pave the way to personalized medicine," Dr. David Craig, another of the paper's senior authors. He is an Associate Professor and Associate Director of TGen's Neurogenomics Division.

The paper, "Paired tumor and normal whole genome sequencing of metastatic olfactory neuroblastoma," was part of a pilot study entitled, "An Ancillary Pilot Trial Using Whole Genome Tumor Sequencing in Patients with Advanced Refractory Cancer."

The National Foundation for Cancer Research, and the TGen Foundation, funded the study.

"This study represents a milestone in cancer research, and is about better treatments — and even cures — for cancer through genomics-based personalized medicine," said Franklin C. Salisbury Jr., President of the National Foundation for Cancer Research. "Whole genome sequencing is giving scientists a better understanding of the genetic basis of many cancers. Based on mutations uncovered by sequencing, doctors will be able to identify both existing anti-cancer drugs, or new anti-cancer drugs, designed to target those very mutations. This is Research for a Cure."

Explore further: First whole-genome lung cancer study set for conference

Related Stories

First whole-genome lung cancer study set for conference

July 6, 2011
A first-of-its-kind study of a patient with lung cancer who never smoked will be presented today by TGen and the Virginia G. Piper Cancer Center at Scottsdale Healthcare at the 14th World Conference on Lung Cancer, July 3-7 ...

TGen, Virginia G. Piper Cancer Center studying new breast cancer drug

July 20, 2011
A new drug targeting the PI3K gene in patients with advanced breast cancer shows promising results in an early phase I investigational study conducted at Virginia G. Piper Cancer at Scottsdale Healthcare, according to a presentation ...

Combination drug therapy urged to battle lung cancer

February 2, 2012
Combination drug therapy may be needed to combat non-small cell lung cancer (NSCLC), according to a study by the Translational Genomics Research Institute (TGen) and Van Andel Research Institute (VARI).

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.