Researchers identify key genes and prototype predictive test for schizophrenia

May 15, 2012

An Indiana University-led research team, along with a group of national and international collaborators, has identified and prioritized a comprehensive group of genes most associated with schizophrenia that together can generate a score indicating whether an individual is at higher or lower risk of developing the disease.

Using a convergent functional genomics approach that incorporates a variety of experimental techniques, the scientists also were able to apply a panel of their top genes to data from other studies of and successfully identify which patients had been diagnosed with schizophrenia and which had not, according to a report published online today by the journal .

Evaluating the biological pathways in which the genes are active, the researchers also proposed a model of schizophrenia as a disease emerging from a mix of genetic variations affecting brain development and along with environmental factors, particularly stress.

"At its core, schizophrenia is a disease of decreased cellular connectivity in the brain, precipitated by environmental stress during , among those with ," said principal investigator Alexander B. Niculescu III, M.D., Ph.D., associate professor of psychiatry and medical neuroscience at the IU School of Medicine and director of the Laboratory of Neurophenomics at the IU Institute of .

"For first time we have a comprehensive list of the genes that have the best evidence for involvement in schizophrenia," said Niculescu, who is also staff psychiatrist and investigator at the Richard L. Roudebush Veterans Affairs Medical Center.

Schizophrenia is a relatively widespread , affecting about 1 percent of the population, often with devastating impact. People with schizophrenia can have difficulty thinking logically and telling the difference between real and unreal experiences, and may engage in bizarre behavior.

When the test estimating the risk for schizophrenia is refined, it could provide guidance to caregivers and health care professionals about young people in families with a history of the disease, prompting early intervention and treatment when behavioral symptoms of schizophrenia occurred among those at higher risk, Dr. Niculescu said.

He stressed that a score indicating a higher risk of schizophrenia "doesn't determine your destiny. It just means that your neuronal connectivity is different, which could make you more creative, or more prone to illness."

"It's all on a continuum; these genetic variants are present throughout the population. If you have too many of them, in the wrong combination, in an environment where you are exposed to stress, alcohol and drugs, and so on, that can lead to the development of the clinical illness," he said.

The prototype test was able to predict whether a person was at a higher or lower risk of schizophrenia in about two-thirds of cases.

To identify and prioritize the genes reported Tuesday, the researchers combined data from several different types of studies. These included genome-wide association studies, gene expression data derived from human tissue samples, genetic linkage studies, genetic evidence from animal models, and other work. This approach, called convergent functional genomics, has been pioneered by Niculescu and colleagues, and relies on multiple independent lines of evidence to implicate genes in clinical disorders.

The authors noted that the results were stronger when analyses were performed using gene-level data, rather than analyses based on individual mutations -- called single nucleotide polymorphisms, or SNPs -- in those genes. Multiple different SNPs can spark a particular gene's role in the development of schizophrenia, so evidence for the , and the biological mechanisms in which they play a role, was much stronger from study to study than was the evidence for individual SNPs.

Past research looking at individual mutations was difficult to replicate from study to study, Dr. Niculescu said. Tuesday's paper, however, indicates that much of the research done in recent years has in fact produced consistent results at a gene and level.

"There is a lot more reproducibility and concordance in the field than people realized," he said.

"Finally now, by better understanding the genetic and biological basis of the illness, we can develop better tests for it, as well as better treatments. The future of medicine is not just treatment but prevention, so we hope this work will move things in the right direction."

Explore further: Large study finds genetic 'overlap' between schizophrenia, bipolar disorder

Related Stories

Large study finds genetic 'overlap' between schizophrenia, bipolar disorder

September 21, 2011
Knowledge about the biological origin of diseases like schizophrenia, bipolar disorder and other psychiatric conditions is critical to improving diagnosis and treatment.

Understanding Schizophrenia

November 16, 2011
(Medical Xpress) -- Genetic mutations that cause schizophrenia could be linked to systems in the brain responsible for learning and memory, a major University study suggests.

De novo mutations provide new genetic clues for schizophrenia

July 10, 2011
De novo mutations – genetic errors that are present in patients but not in their parents – are more frequent in schizophrenic patients than in normal individuals, according to an international group of scientists ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Birger
not rated yet May 15, 2012
Yes! If all teenagers were screened for risk, those in the danger zone (about 1%) could get low doses of medicine to prevent the disease from manifesting.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.