Neuro researchers sharpen our understanding of memories

May 1, 2012

Scientists now have a better understanding of how precise memories are formed thanks to research led by Prof. Jean-Claude Lacaille of the University of Montreal's Department of Physiology. "In terms of human applications, these findings could help us to better understand memory impairments in neurodegenerative disorders like Alzheimer's disease," Lacaille said.

The study looks at the cells in our brains, or neurons, and how they work together as a group to form memories. Chemical receptors at neuron interconnections called enable these cells to form electrical networks that encode memories, and neurons are classified into two groups according to the type of chemical they produce: excitatory, who produce chemicals that increase communication between neurons, and inhibitory, who have the opposite effect, decreasing communication. "Scientists knew that inhibitory cells enable us to refine our memories, to make them specific to a precise set of information," Lacaille explained. "Our findings explain for the first time how this happens at the molecular and cell levels."

Many studies have been undertaken on excitatory neurons, but very little research has been done on , partly because they are very difficult to study. The scientists found that a factor called "CREB" plays a key role in adjusting and the strength of synapses in inhibitory neurons. Proteins are biochemical compounds encoded in our genes that enable cells to perform their various functions, and new proteins are necessary for . "We were able to study how synapses of inhibitory taken from rats are modified in the 24 hours following the formation of a memory," Lacaille said. "In the laboratory, we simulated the formation of a new memory by using chemicals. We then measured the electrical activity within the network of cells. In cells where we had removed CREB, we saw that the strength of the electrical connections was much weaker. Conversely, when we increased the presence of CREB, the connections were stronger."

This new understanding of the chemical functioning of the brain may one day lead to new treatments for disorders like Alzheimer's, as researchers will be able to look at these synaptic mechanisms and design drugs that target the chemicals involved. "We knew that problems with synapse modifications are amongst the roots of the cognitive symptoms suffered by the victims of neurodegenerative diseases," Lacaille said. "These findings shine light on the neurobiological basis of their memory problems. However, we are unfortunately many years away from developing new treatments from this information."

The findings were published in the Journal of Neuroscience on May 2, 2012. The researchers received funding from the Canadian Institutes of Health Research and the Fonds de recherche du Québec – Santé. Jean-Claude Lacaille is the Canada Research Chair in Cellular and Molecular Neurophysiology. Israeli Ran, recipient of a Fellowship of the Savoy Foundation, and Isabel Laplante contributed to this research. All three researchers were affiliated with the Department of and the Groupe de Recherche sur le Système Nerveux Central of the University of Montreal when the research was undertaken. The University of Montreal is officially known as Université de Montréal.

Explore further: Study provides potential explanation for mechanisms of associative memory

Related Stories

Study provides potential explanation for mechanisms of associative memory

December 13, 2011
Researchers from the University of Bristol have discovered that a chemical compound in the brain can weaken the synaptic connections between neurons in a region of the brain important for the formation of long-term memories. ...

Scientists discover new mechanism that may be important for learning and memory

July 14, 2011
(Medical Xpress) -- New findings in mice suggest that the timing when the neurotransmitter acetylcholine is released in the brain’s hippocampus may play a key role in regulating the strength of nerve cell connections, ...

New target for Alzheimer's drugs

February 9, 2012
(Medical Xpress) -- Biomedical scientists at the University of California, Riverside have identified a new link between a protein called beta-arrestin and short-term memory that could open new doors for the therapeutic treatment ...

Recommended for you

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.