New path of origin for macrophages

May 2, 2012

Macrophages play a key role in the immune response, protecting organisms against infection and regulating the development of inflammation in tissue. Macrophages differ depending on where they are located and which tasks they perform. A scientist at TUM has been investigating whether these different types of cells have the same origin – and has come up with some surprising results. His findings reveal that there are two distinct macrophage cell lines that continue into adult life and that these two lineages have different origins. The research was recently published in Science magazine.

The organs of vertebrates, including of course humans and other mammals, are made of a multitude of highly specialized cells that are built by embryonic stem cells. This is also true for cells of the immune system. Until recently, it was thought that all macrophages were created from hematopoietic (blood) stem cells. However, some of these had also been found to exist in the yolk sac prior to the appearance of stem cells. For a long time, the existence of these extraembryonic macrophages was a puzzle to scientists.

During a sabbatical at King's College in London, Dr. Christian Schulz, internist at the Deutsches Herzzentrum (German Heart Center) of the Technische Universität München, and his research colleagues set about investigating the development of macrophages in mice. To determine the extent to which macrophages can develop independently of embryonic stem cells, the scientists carried out experiments on mice without the "myb" growth factor, which plays an important role in cell growth and is thus crucial to the formation of blood stem cells. "To our surprise, we found that macrophages in the yolk sac also develop without myb. This enabled us to close in on a cell line that can develop independently of stem cells," explains Christian Schulz.

The researchers used cell markers in the early phase of embryonic development to trace the paths of these different immune cells. The investigations led to some unexpected conclusions. The myeloid cells that formed in the yolk sac developed into macrophages that reside in the tissue of various organs in adult mice. The macrophages circulating in the blood stream did not originate in the yolk sac. These macrophages were created exclusively by stem cells. For Schulz, this could only mean one thing: "Yolk sac macrophages obviously migrate to the organs at a very early stage in embryonic development – and remain there. There is evidence to suggest that these cells can survive and regenerate themselves in the organs over a long period of time. By contrast, short-lived macrophages in the blood stream are continually replaced through the ."

Resident macrophages in the brain are known as microglia cells. Macrophages in the skin are known as Langerhans cells and those in the liver are called Kupffer cells. They are non-specific killer cells that eliminate bacteria and other foreign bodies and, as antigen-presenting immune cells, also initiate specific immune responses. Current research indicates that two distinct lines of myeloid cells exist. Both reveal different gene expressions and perform different tasks. "Further studies will establish whether or not there are consequences for inflammatory processes," outlines Christian Schulz. "As a heart specialist, I am particularly interested in the conclusions for arteriosclerosis, an of the vascular wall that can lead to heart attack or stroke."

Related Stories

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Co-infection with two common gut pathogens worsens malnutrition in mice

July 27, 2017
Two gut pathogens commonly found in malnourished children combine to worsen malnutrition and impair growth in laboratory mice, according to new research published in PLOS Pathogens.

Study sheds light on how body may detect early signs of cancer

July 26, 2017
Fresh insights into how cells detect damage to their DNA - a hallmark of cancer - could help explain how the body keeps disease in check.

How genetically engineered viruses develop into effective vaccines

July 26, 2017
Lentiviral vectors are virus particles that can be used as a vaccine to stimulate the immune system to fight against specific pathogens. The vectors are derived from HIV, rendered non-pathogenic, and then engineered to carry ...

Accounting for human immune diversity increases clinical relevance of fundamental immunological research

July 26, 2017
Mouse models have advanced our understanding of immune function and disease in many ways but they have failed to account for the natural diversity in human immune responses. As a result, insights gained in the lab may be ...

Study suggests same gut bacteria can trigger different immune responses depending on environment

July 24, 2017
(Medical Xpress)—A group of researchers affiliated with several institutions in the U.S. has found that one type of gut bacteria triggers different kinds of immune responses depending on the state of the environment they ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.