Researchers identify potential new HIV vaccine/therapy target

May 30, 2012

After being infected with simian immunodeficiency virus (SIV) in a laboratory study, rhesus macaques that had more of a certain type of immune cell in their gut than others had much lower levels of the virus in their blood, and for six months after infection were better able to control the virus.

SIV is a that infects . Strains of that crossed over to humans resulted in the evolution of HIV. In , SIV causes simian AIDS (though in many primates it is harmless) and studying the virus in these animals offers crucial insights into how HIV acts in humans, the researchers said.

The discovery by researchers at UCSF may shed light on the mystery of why some people infected with HIV are better able to control the virus, live longer and have fewer associated than others who have been infected as long, they said. It also provides a potential new for developing therapies or vaccines.

The cells that have the protective effect, called Th17 (T helper 17) cells, are a subset of the type of disease-fighting immune cell targeted and killed by HIV and found in the gut of both primates and humans.

A prior study from the same UCSF team found that SIV infection causes a normally protective immune response to infection to go awry, leading to reduction in the protective activity in the gut of these Th17 cells and weakening of mucosal defenses against bacteria. Interestingly, in that study, Th17 cells were not affected by SIV in another primate, African , in which SIV infection is harmless and does not cause disease.

"Animals with more of these Th17 cells were better able to control SIV and this was due in part to macaques developing a more effective immune response by producing more SIV-specific CD4-positive T-cells to fight the infection. Our next step is to see if we can augment the Th17 effect, perhaps by looking at 17 (IL-17), the released by these cells, and testing to see if it has an effect," said the study's primary investigator, Dennis Hartigan-O'Connor, MD, PhD, assistant professor of medicine at the UCSF Division of Experimental Medicine.

"Further, if a treatment can be developed to increase Th17 cells in the gut, it may allow for a more effective immune response after exposure to an HIV vaccine or the virus itself," he added.

The findings are being published in the May 30, 2012 issue of Science Translational Medicine.

In the new study, the investigators first determined the levels of Th17 cells in the gut of sixteen rhesus macaques and then infected them with SIV. They found that the animals with more Th17 cells to begin with were better able to control the virus. They then gave animals drugs that deplete Th17 cells and found that reducing the number of Th17 cells made controlling SIV more difficult for those animals.

"We found great variation in the levels of Th17 cells, with as much as a five-fold difference in numbers between animals. We are not sure why this is the case. It could be genetically determined or perhaps due to a previous exposure to a type of bacteria that stimulates production of Th17 cells," said Hartigan-O'Connor.

This study is part of a series of investigations undertaken by researchers at the UCSF Division of Experimental Medicine into how SIV, and by extension HIV, interacts with the immune system in the gut. The previous study was focused on chronic infection and persistent inflammation in the gut.

"The earlier study addressed the cause and consequence of inflammation after infection. We found that inflammation induces an enzyme that knocks out Th17 cells, which normally help to keep the gut intact, and that disease progression was faster. Reciprocally, we have now found that animals do better if they have many Th17 cells at the outset of infection. We are gradually increasing our understanding of this important aspect of the immune system and we are working to translate this understanding into an approach that benefits patients," said study senior author, Joseph M. McCune, MD, PhD, chief of the UCSF Division of Experimental Medicine.

Study co-investigators include Bittoo Kanwar from UCSF Division of Experimental Medicine and Kristina Abel and Koen K. A. Van Rompay from the University of California, Davis.

Explore further: SIV's natural hosts reveal how humans might better manage HIV infection

Related Stories

SIV's natural hosts reveal how humans might better manage HIV infection

March 8, 2012
Some monkeys can survive infection by SIV, a relative of HIV, and not develop AIDS. Their immune systems appear to display a pattern of "peaceful coexistence" rather than the all-out conflict provoked by HIV when it infects ...

Antibodies help protect monkeys from HIV-like virus, scientists show

May 5, 2011
Using a monkey model of AIDS, scientists have identified a vaccine-generated immune-system response that correlates with protection against infection by the monkey version of HIV, called simian immunodeficiency virus (SIV). ...

Monkeys resist infection by closing gates that SIV, HIV use to get into cells

June 26, 2011
Sooty mangabeys, a type of African monkey, have intrigued scientists for years because they can survive infection by SIV, a relative of HIV, and not succumb to AIDS.

Recommended for you

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

National roll-out of PrEP HIV prevention drug would be cost-effective

October 18, 2017
Providing pre-exposure prophylaxis (PrEP) medication to men who have sex with men who are at high risk of HIV infection (equivalent to less than 5% of men who have sex with men at any point in time) in England would be cost-effective, ...

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

New research opens the door to 'functional cure' for HIV

October 17, 2017
In findings that open the door to a completely different approach to curing HIV infections, scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time shown that a novel compound effectively ...

Researchers create molecule that could 'kick and kill' HIV

October 5, 2017
Current anti-AIDS drugs are highly effective at making HIV undetectable and allowing people with the virus to live longer, healthier lives. The treatments, a class of medications called antiretroviral therapy, also greatly ...

A sixth of new HIV patients in Europe 50 or older: study

September 27, 2017
People aged 50 and older comprise a growing percentage of HIV patients in Europe, accounting for one in six new cases in 2015, researchers said Wednesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.