Researchers identify potential new HIV vaccine/therapy target

May 30, 2012, University of California, San Francisco

After being infected with simian immunodeficiency virus (SIV) in a laboratory study, rhesus macaques that had more of a certain type of immune cell in their gut than others had much lower levels of the virus in their blood, and for six months after infection were better able to control the virus.

SIV is a that infects . Strains of that crossed over to humans resulted in the evolution of HIV. In , SIV causes simian AIDS (though in many primates it is harmless) and studying the virus in these animals offers crucial insights into how HIV acts in humans, the researchers said.

The discovery by researchers at UCSF may shed light on the mystery of why some people infected with HIV are better able to control the virus, live longer and have fewer associated than others who have been infected as long, they said. It also provides a potential new for developing therapies or vaccines.

The cells that have the protective effect, called Th17 (T helper 17) cells, are a subset of the type of disease-fighting immune cell targeted and killed by HIV and found in the gut of both primates and humans.

A prior study from the same UCSF team found that SIV infection causes a normally protective immune response to infection to go awry, leading to reduction in the protective activity in the gut of these Th17 cells and weakening of mucosal defenses against bacteria. Interestingly, in that study, Th17 cells were not affected by SIV in another primate, African , in which SIV infection is harmless and does not cause disease.

"Animals with more of these Th17 cells were better able to control SIV and this was due in part to macaques developing a more effective immune response by producing more SIV-specific CD4-positive T-cells to fight the infection. Our next step is to see if we can augment the Th17 effect, perhaps by looking at 17 (IL-17), the released by these cells, and testing to see if it has an effect," said the study's primary investigator, Dennis Hartigan-O'Connor, MD, PhD, assistant professor of medicine at the UCSF Division of Experimental Medicine.

"Further, if a treatment can be developed to increase Th17 cells in the gut, it may allow for a more effective immune response after exposure to an HIV vaccine or the virus itself," he added.

The findings are being published in the May 30, 2012 issue of Science Translational Medicine.

In the new study, the investigators first determined the levels of Th17 cells in the gut of sixteen rhesus macaques and then infected them with SIV. They found that the animals with more Th17 cells to begin with were better able to control the virus. They then gave animals drugs that deplete Th17 cells and found that reducing the number of Th17 cells made controlling SIV more difficult for those animals.

"We found great variation in the levels of Th17 cells, with as much as a five-fold difference in numbers between animals. We are not sure why this is the case. It could be genetically determined or perhaps due to a previous exposure to a type of bacteria that stimulates production of Th17 cells," said Hartigan-O'Connor.

This study is part of a series of investigations undertaken by researchers at the UCSF Division of Experimental Medicine into how SIV, and by extension HIV, interacts with the immune system in the gut. The previous study was focused on chronic infection and persistent inflammation in the gut.

"The earlier study addressed the cause and consequence of inflammation after infection. We found that inflammation induces an enzyme that knocks out Th17 cells, which normally help to keep the gut intact, and that disease progression was faster. Reciprocally, we have now found that animals do better if they have many Th17 cells at the outset of infection. We are gradually increasing our understanding of this important aspect of the immune system and we are working to translate this understanding into an approach that benefits patients," said study senior author, Joseph M. McCune, MD, PhD, chief of the UCSF Division of Experimental Medicine.

Study co-investigators include Bittoo Kanwar from UCSF Division of Experimental Medicine and Kristina Abel and Koen K. A. Van Rompay from the University of California, Davis.

Explore further: SIV's natural hosts reveal how humans might better manage HIV infection

Related Stories

SIV's natural hosts reveal how humans might better manage HIV infection

March 8, 2012
Some monkeys can survive infection by SIV, a relative of HIV, and not develop AIDS. Their immune systems appear to display a pattern of "peaceful coexistence" rather than the all-out conflict provoked by HIV when it infects ...

Antibodies help protect monkeys from HIV-like virus, scientists show

May 5, 2011
Using a monkey model of AIDS, scientists have identified a vaccine-generated immune-system response that correlates with protection against infection by the monkey version of HIV, called simian immunodeficiency virus (SIV). ...

Monkeys resist infection by closing gates that SIV, HIV use to get into cells

June 26, 2011
Sooty mangabeys, a type of African monkey, have intrigued scientists for years because they can survive infection by SIV, a relative of HIV, and not succumb to AIDS.

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.