Psychiatric medication effects on brain structure

May 8, 2012

It is increasingly recognized that chronic psychotropic drug treatment may lead to structural remodeling of the brain. Indeed, clinical studies in humans present an intriguing picture: antipsychotics, used for the treatment of schizophrenia and psychosis, may contribute to cortical gray matter loss in patients, whereas lithium, used for the treatment of bipolar disorder and mania, may preserve gray matter in patients.

However, the clinical significance of these structural changes is not yet clear. There are many challenges in executing longitudinal, controlled, and randomized studies to evaluate this issue in humans, particularly because there are also many confounding factors, including illness severity, illness duration, and other medications, when studying patients.

It is therefore critical to develop animal models to inform the clinical research. To accomplish this, a group of researchers at King's College London, led by Dr. Shitij Kapur, developed a rat model using clinically relevant and matched clinical dosing in combination with longitudinal . They administered either lithium or haloperidol (a common antipsychotic) to rats in doses equivalent to those received by humans. The rats received this treatment daily for eight weeks, equivalent to 5 human years, and underwent brain scans both before and after treatment.

Dr. Kapur explained their findings, "Using this approach, we observed that chronic treatment with haloperidol leads to decreases in cortical gray matter, whilst lithium induced an increase, effects that were reversible after drug withdrawal." was decreased by 6% after haloperidol treatment, but increased by 3% after .

"These important observations clarify conflicting findings from clinical trials by removing many of the confounding effects," commented Dr. John Krystal, Editor of . "Whether these changes in underlie the benefits or side effects of these medications remain to be seen. However, they point to brain effects of established medications that are not well understood, but which may hold clues to new treatment approaches."

"Whilst these intriguing findings are consistent with available clinical data, it should be noted these studies were done in normal rats, which do not capture the innate pathology of either schizophrenia or bipolar disorder," Kapur added. "Moreover, because the mechanism(s) of these drug effects remain unknown, further studies are required, and one should be cautious in drawing clinical inferences. Nevertheless, our study demonstrates a new and powerful model system for further investigation of the effects of psychotropic drug treatment on brain morphology."

Explore further: Schizophrenia diagnosis associated with progressive brain changes among adolescents

More information: The article is "Contrasting Effects of Haloperidol and Lithium on Rodent Brain Structure: A Magnetic Resonance Imaging Study with Postmortem Confirmation" by Anthony C. Vernon, Sridhar Natesan, William R. Crum, Jonathan D. Cooper, Michel Modo, Steven C.R. Williams, and Shitij Kapur (doi: 10.1016/j.biopsych.2011.12.004). The article appears in Biological Psychiatry, Volume 71, Issue 10 (May 15, 2012)

Related Stories

Schizophrenia diagnosis associated with progressive brain changes among adolescents

January 2, 2012
Adolescents diagnosed with schizophrenia and other psychoses appear to show greater decreases in gray matter volume and increases in cerebrospinal fluid in the frontal lobe compared to healthy adolescents without a diagnosis ...

New study aims to improve long-term treatment for patients with bipolar disorder

May 24, 2011
Patients with bipolar disorder may be eligible for a new clinical research study comparing two medications -- quetiapine (Seroquel), a widely prescribed second-generation antipsychotic mood-stabilizing medication, and lithium, ...

Recommended for you

Probing how Americans think about mental life

October 20, 2017
When Stanford researchers asked people to think about the sensations and emotions of inanimate or non-human entities, they got a glimpse into how those people think about mental life.

Itsy bitsy spider: Fear of spiders and snakes is deeply embedded in us

October 19, 2017
Snakes and spiders evoke fear and disgust in many people, even in developed countries where hardly anybody comes into contact with them. Until now, there has been debate about whether this aversion is innate or learnt. Scientists ...

Inflamed support cells appear to contribute to some kinds of autism

October 18, 2017
Modeling the interplay between neurons and astrocytes derived from children with Autism Spectrum Disorder (ASD), researchers at University of California San Diego School of Medicine, with colleagues in Brazil, say innate ...

Study suggests psychedelic drugs could reduce criminal behavior

October 18, 2017
Classic psychedelics such as psilocybin (often called magic mushrooms), LSD and mescaline (found in peyote) are associated with a decreased likelihood of antisocial criminal behavior, according to new research from investigators ...

Taking probiotics may reduce postnatal depression

October 18, 2017
Researchers from the University of Auckland and Otago have found evidence that a probiotic given in pregnancy can help prevent or treat symptoms of postnatal depression and anxiety.

Schizophrenia disrupts the brain's entire communication system, researchers say

October 17, 2017
Some 40 years since CT scans first revealed abnormalities in the brains of schizophrenia patients, international scientists say the disorder is a systemic disruption to the brain's entire communication system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.