Study reveals how high-fat foods impact diabetes and metabolic syndrome

May 22, 2012

A University of Michigan Health System study provides new clues about the health-damaging molecular changes set in motion by eating high-fat foods.

A better understanding of the body's response to indulgent eating could lead to new approaches for treating and . High-fat foods can contribute to , which increases the risk for developing .

The researchers learned a key called Bcl10 is needed for the free fatty acids – which are found in high fat food and stored in body fat -- to impair insulin action and lead to abnormally high blood sugar.

In the laboratory study, mice deficient in Bcl10 were protected from developing insulin resistance when fed a high-fat diet. The findings will be published May 31 in Cell Reports.

Insulin helps control blood sugar, but insulin resistance can lead to the abnormally high blood sugar levels that are the hallmark of diabetes. Insulin resistance can occur as part of metabolic syndrome, a cluster of conditions that increase the risk for type 2 diabetes and heart disease.

As millions of Americans become overweight and obese, type 2 diabetes and metabolic syndrome are on the rise.

"The study also underscores how very short-term changes in diet such as high-fat eating for only a few days, perhaps even less, can induce a state of insulin resistance," says senior study author Peter C. Lucas, M.D., Ph.D., associate professor of pathology at the University of Michigan Medical School.

Researchers began by investigating how free fatty acids induce inflammation and impair insulin action in the liver. It's thought the liver is a major target for the harmful effects of free fatty acids.

In the liver, undergo metabolism to produce diacylglycerols prior to inducing the inflammatory response. Diacylglycerols also activate NF-kB signaling which has been linked with cancer, metabolic and vascular diseases.

The team of researchers concluded that Bcl10 is required for fatty acids to induce inflammation and . In the study, Bcl10-deficient mice showed significant improvement in regulation of blood sugar.

"We were surprised to learn that Bcl10, a protein previously known for its critical role in immune cell response to infection, also plays a critical role in the liver's response to fatty acid," says Lucas.. "This is an example of nature co-opting a mechanism fundamental to the immune system and using it in a metabolic organ, in this case, the liver."

"These findings reveal a new and important role for Bcl10 and could lead to novel ideas for treating patients with metabolic syndrome and type 2 diabetes," says co-senior author Linda M. McAllister-Lucas, M.D., Ph.D., associate professor of pediatric hemotology/oncology.

Explore further: Gut microbiota transplantation may prevent development of diabetes and fatty liver disease

More information: "Bcl10 Links Saturated Fat Overnutrition with Hepatocellular NF-kB Activation and Insulin Resistance," Cell Reports (2012), doi:10.1016/j.celrep.2012.04.006, May 31, 2012.

Related Stories

Gut microbiota transplantation may prevent development of diabetes and fatty liver disease

April 19, 2012
Exciting new data presented today at the International Liver Congress 2012 shows the gut microbiota's causal role in the development of diabetes and non-alcoholic fatty liver disease (NAFLD), independent of obesity.(1) Though ...

Study helps clarify link between high-fat diet and type 2 diabetes

April 11, 2011
A diet high in saturated fat is a key contributor to type 2 diabetes, a major health threat worldwide. Several decades ago scientists noticed that people with type 2 diabetes have overly active immune responses, leaving their ...

Liver fat gets a wake-up call that maintains blood sugar levels

May 6, 2012
A Penn research team, led by Mitchell Lazar, MD, PhD, director of the Institute for Diabetes, Obesity, and Metabolism at the Perelman School of Medicine, University of Pennsylvania, reports in Nature Medicine that mice in ...

Study offers insight to how fructose causes obesity, metabolic syndrome

February 27, 2012
A group of scientists from across the world have come together in a just-published study that provides new insights into how fructose causes obesity and metabolic syndrome, more commonly known as diabetes.

Recommended for you

People who drink 3 to 4 times per week less likely to develop diabetes than those who never drink: study

July 27, 2017
Frequent alcohol consumption is associated with a reduced risk of diabetes in both men and women, according to a new study published in Diabetologia (the journal of the European Association for the Study of Diabetes), with ...

Diabetes can be tracked with our Google searches

July 26, 2017
The emergence of Type 2 Diabetes could be more effectively monitored using our Google searches—helping public health officials keep track of the disease and halt its spread—according to research by the University of Warwick.

Scientists discover a new way to treat type 2 diabetes

July 21, 2017
Medication currently being used to treat obesity is also proving to have significant health benefits for patients with type 2 diabetes. A new study published today in Molecular Metabolism explains how this therapeutic benefit ...

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.