Songbirds' learning hub in brain offers insight into motor control

May 20, 2012

To learn its signature melody, the male songbird uses a trial-and-error process to mimic the song of its father, singing the tune over and over again, hundreds of times a day, making subtle changes in the pitch of the notes. For the male Bengalese finch, this rigorous training process begins around the age of 40 days and is completed about day 90, just as he becomes sexually mature and ready to use his song to woo females.

To accomplish this feat, the finch's brain must receive and process large quantities of information about its performance and use that data to precisely control the complex vocal actions that allow it to modify the pitch and pattern of its song.

Now, scientists at UCSF have shown that a key brain structure acts as a learning hub, receiving information from other regions of the brain and figuring out how to use that information to improve its song, even when it's not directly controlling the action. These insights may help scientists figure out new ways to treat neurological disorders that impair movement such as Huntington's disease and .

The research is reported as an advanced online publication on May 20, 2012 by the journal Nature, and will appear at a later date in the journal's print edition.

Years of research conducted in the lab of Michael Brainard, PhD, an associate professor of physiology at UCSF, has shown that adult finches can keep track of slight differences in the individual "," or notes, they play and hear, and make mental computations that allow them to alter the pitch.

For previous experiments, Brainard and his colleagues developed a training process that induced adult finches to calibrate their song. They created a program that could recognize the pitch of every syllable the bird sang. The computer also delivered a sound the birds didn't like—a kind of white noise—at the very moment they uttered a specific note. Within a few hours, the finches learned to alter the pitch of that syllable to avoid hearing the unpleasant sound.

In the new research, the UCSF neuroscientists used their technology to investigate how the learning process is controlled by the brain. A prevailing theory suggests that new learning is controlled by a "smart" called the basal ganglia, a cluster of interconnected brain regions involved in motor control and learning.

"It's the first place where the brain is putting two and two together," said Jonathan Charlesworth, a recent graduate of UCSF's neuroscience PhD program and the first author of the new paper. "If you remove the basal ganglia in a bird that hasn't yet learned to sing, it will never learn to do so."

Once a basic, frequently repeated skill such as typing, singing the same song or shooting a basketball from the free-throw line is learned, the theory suggests, control of that activity is carried out by the motor pathway, the part of the nervous system that transmits signals from the brain to muscles. But for the basic routine to change—for a player to shoot from another spot on the basketball court or a bird to sing at a different pitch—the basal ganglia must again get involved, providing feedback that allows learning based on trial and error, the theory suggests.

What remained unclear is what makes the basal ganglia so "smart" and enables them to support such detailed trial-and-error learning. Was it something to do with their structure? Or were they getting information from elsewhere?

The scientists sought to answer this question by blocking the output of a key basal ganglia circuit while training male finches to alter their song using the white-noise blasts. As long as the basal ganglia were kept from sending signals to the motor pathway, the finches didn't change their tune or show signs of learning. But when Brainard's team stopped blocking the basal ganglia, something surprising happened: the immediately changed the pitch of their song, with no additional practice.

"It's as if a golfer went to the driving range and was terrible, hitting the ball into the trees all day and not getting any better," said Charlesworth. "Then, at the end of the day, you throw a switch and all of a sudden you're hitting the fairway like you're Tiger Woods."

Normally, you'd expect improvement in skill performance like this to take time as the basal ganglia evaluates information, makes changes and gets new feedback, Brainard said.

"The surprise here is that the basal ganglia can pay attention, observe what other motor structures are doing and get information even when they aren't involved in motor control," Brainard said. "They covertly learned how to improve skill performance and this explains how they did it."

These findings suggest that the basal ganglia's "smartness" is due in large part to the steady flow of information they receive about the commands of other motor structures. It also portrays the basal ganglia as far more versatile than previously understood, able to learn how to calibrate fine-motor skills by acting as a specialized hub that receives information from various parts of the brain and responds to that information with new directives.

The findings also support the notion that problems in the circuit's ability to receive information and learn from it may help trigger the movement disorders that are symptoms of Huntington's and Parkinson's, Brainard said.

Explore further: Abnormal oscillation in the brain causes motor deficits in Parkinson's disease

Related Stories

Abnormal oscillation in the brain causes motor deficits in Parkinson's disease

November 1, 2011
The research group headed by Professor Atsushi Nambu (The National Institute for Physiological Sciences) and Professor Masahiko Takada (Primate Research Institute, Kyoto University) has shown that the 'oscillatory' nature ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.