Songbirds' learning hub in brain offers insight into motor control

May 20, 2012

To learn its signature melody, the male songbird uses a trial-and-error process to mimic the song of its father, singing the tune over and over again, hundreds of times a day, making subtle changes in the pitch of the notes. For the male Bengalese finch, this rigorous training process begins around the age of 40 days and is completed about day 90, just as he becomes sexually mature and ready to use his song to woo females.

To accomplish this feat, the finch's brain must receive and process large quantities of information about its performance and use that data to precisely control the complex vocal actions that allow it to modify the pitch and pattern of its song.

Now, scientists at UCSF have shown that a key brain structure acts as a learning hub, receiving information from other regions of the brain and figuring out how to use that information to improve its song, even when it's not directly controlling the action. These insights may help scientists figure out new ways to treat neurological disorders that impair movement such as Huntington's disease and .

The research is reported as an advanced online publication on May 20, 2012 by the journal Nature, and will appear at a later date in the journal's print edition.

Years of research conducted in the lab of Michael Brainard, PhD, an associate professor of physiology at UCSF, has shown that adult finches can keep track of slight differences in the individual "," or notes, they play and hear, and make mental computations that allow them to alter the pitch.

For previous experiments, Brainard and his colleagues developed a training process that induced adult finches to calibrate their song. They created a program that could recognize the pitch of every syllable the bird sang. The computer also delivered a sound the birds didn't like—a kind of white noise—at the very moment they uttered a specific note. Within a few hours, the finches learned to alter the pitch of that syllable to avoid hearing the unpleasant sound.

In the new research, the UCSF neuroscientists used their technology to investigate how the learning process is controlled by the brain. A prevailing theory suggests that new learning is controlled by a "smart" called the basal ganglia, a cluster of interconnected brain regions involved in motor control and learning.

"It's the first place where the brain is putting two and two together," said Jonathan Charlesworth, a recent graduate of UCSF's neuroscience PhD program and the first author of the new paper. "If you remove the basal ganglia in a bird that hasn't yet learned to sing, it will never learn to do so."

Once a basic, frequently repeated skill such as typing, singing the same song or shooting a basketball from the free-throw line is learned, the theory suggests, control of that activity is carried out by the motor pathway, the part of the nervous system that transmits signals from the brain to muscles. But for the basic routine to change—for a player to shoot from another spot on the basketball court or a bird to sing at a different pitch—the basal ganglia must again get involved, providing feedback that allows learning based on trial and error, the theory suggests.

What remained unclear is what makes the basal ganglia so "smart" and enables them to support such detailed trial-and-error learning. Was it something to do with their structure? Or were they getting information from elsewhere?

The scientists sought to answer this question by blocking the output of a key basal ganglia circuit while training male finches to alter their song using the white-noise blasts. As long as the basal ganglia were kept from sending signals to the motor pathway, the finches didn't change their tune or show signs of learning. But when Brainard's team stopped blocking the basal ganglia, something surprising happened: the immediately changed the pitch of their song, with no additional practice.

"It's as if a golfer went to the driving range and was terrible, hitting the ball into the trees all day and not getting any better," said Charlesworth. "Then, at the end of the day, you throw a switch and all of a sudden you're hitting the fairway like you're Tiger Woods."

Normally, you'd expect improvement in skill performance like this to take time as the basal ganglia evaluates information, makes changes and gets new feedback, Brainard said.

"The surprise here is that the basal ganglia can pay attention, observe what other motor structures are doing and get information even when they aren't involved in motor control," Brainard said. "They covertly learned how to improve skill performance and this explains how they did it."

These findings suggest that the basal ganglia's "smartness" is due in large part to the steady flow of information they receive about the commands of other motor structures. It also portrays the basal ganglia as far more versatile than previously understood, able to learn how to calibrate fine-motor skills by acting as a specialized hub that receives information from various parts of the brain and responds to that information with new directives.

The findings also support the notion that problems in the circuit's ability to receive information and learn from it may help trigger the movement disorders that are symptoms of Huntington's and Parkinson's, Brainard said.

Explore further: Abnormal oscillation in the brain causes motor deficits in Parkinson's disease

Related Stories

Abnormal oscillation in the brain causes motor deficits in Parkinson's disease

November 1, 2011
The research group headed by Professor Atsushi Nambu (The National Institute for Physiological Sciences) and Professor Masahiko Takada (Primate Research Institute, Kyoto University) has shown that the 'oscillatory' nature ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.