Study supports urate protection against Parkinson's disease, hints at novel mechanism

May 23, 2012

Use of the antioxidant urate to protect against the neurodegeneration caused by Parkinson's disease appears to rely on more than urate's ability to protect against oxidative damage. In the May issue of the open-access journal PLoS One, researchers from the MassGeneral Institute for Neurodegenerative Diseases (MGH-MIND) describe experiments suggesting the involvement of a novel mechanism in urate's protection of cultured brain cells against Parkinson's-like damage.

"Our experiments showed, unexpectedly, that urate's ability to protect neurons requires the presence of neighboring cells called astrocytes," says Michael Schwarzschild, MD, PhD, of MGH-MIND, the study's senior author. "The results suggest there may be multiple ways that raising urate could help protect against neurodegeneration in diseases like Parkinson's and further support the development of treatments designed to elevate urate in the brain." Schwarzschild and colleagues in the Parkinson's Study Group currently are conducting a clinical trial investigating one approach to that strategy.

Characterized by , rigidity, difficulty walking and other symptoms, Parkinson's disease is caused by destruction of that produce the . Several epidemiological studies suggested that healthy people with elevated levels of urate, a normal component of the blood, may have a reduced risk of developing Parkinson's disease, and investigations by Schwarzschild's team found that Parkinson's patients with higher naturally occuring urate levels had slower progression of their symptoms.

The current study was designed to investigate whether both added urate and urate already present within the cells protect cultured dopamine-producing neurons against Parkinson-like degeneration. In addition, since previous studies suggested that urate's protective effects depended on the presence of astrocytes – star-shaped cells of the central nervous system that provide both structural and metabolic support to neurons – the MGH-MIND team explored how the presence of astrocytes affects the ability of urate to protect against damage induced by MPP+, a toxic molecule that produces the same kind of seen in Parkinson's and is widely used in research studies.

The experiments showed that, while added urate reduced MPP+-induced cell death by about 50 percent in cultured dopamine-producing mouse neurons, urate treatment virtually eliminated neuronal death in cultures containing both neurons and astrocytes. They also showed that reducing intracellular urate levels by induced expression of the enzyme that breaks it down increased neuronal vulnerability to MPP+ toxicity significantly in cultures that included astrocytes but only slightly in neuron-rich cultures. The fact that the presence of astrocytes greatly increases the protection of both externally applied urate and urate produced within cells indicates that the effect depends on more than urate's ability to directly protect neurons against oxidative stress.

"A valuable next step will be determining whether endogenous urate is protective in live animal models of Parkinson's disease," says Schwarzschild. "It also will be important to determine whether we can selectively increase urate levels in brain cells by targeting urate transporter molecules. The approach now in early examines whether treatment with the urate precursor inosine, which increases urate levels throughout the body, can slow the progression of the disease. If we could raise urate levels in brain cells without changing them in the rest of the body, we could avoid the risks of of excessive urate, which when accumulated in joints can cause gout."

Explore further: Dual-energy CT may be useful in evaluating the severity of gout, study suggests

Related Stories

Dual-energy CT may be useful in evaluating the severity of gout, study suggests

April 30, 2011
The incidence of gout is on the rise and duel energy CT has the potential to allow non-invasive diagnosis of the disease, according to radiologists at the University of British Columbia, Vancouver General Hospital, in Vancouver, ...

Clinical trial demonstrates that rilonacept significantly reduces gout flares

January 5, 2012
A phase II clinical trial found that rilonacept, an inhibitor of the protein interleukin-1 (IL-1), significantly reduced acute gout flares that occur when initiating uric acid-lowering therapy. Results of the trial—the ...

Reprogramming brain cells important first step for new Parkinson's therapy, study finds

December 13, 2011
(Medical Xpress) -- In efforts to find new treatments for Parkinson’s Disease (PD), researchers from the Perelman School of Medicine at the University of Pennsylvania have directly reprogrammed astrocytes, the most plentiful ...

Recommended for you

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

Predicting cognitive deficits in people with Parkinson's disease

June 20, 2017
Parkinson's disease (PD) is commonly thought of as a movement disorder, but after years of living with PD approximately twenty five percent of patients also experience deficits in cognition that impair function. A newly developed ...

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017
Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal ...

CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. ...

Infection with seasonal flu may increase risk of developing Parkinson's disease

May 30, 2017
Most cases of Parkinson's have no known cause, and researchers continue to debate and study possible factors that may contribute to the disease. Research reported in the journal npj Parkinson's Disease suggests that a certain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.