Research yields new clues to how brain cancer cells migrate and invade

May 1, 2012

Researchers have discovered that a protein that transports sodium, potassium and chloride may hold clues to how glioblastoma, the most common and deadliest type of brain cancer, moves and invades nearby healthy brain tissue. The findings, reported 1 May in the online, open-access journal PLoS Biology, also suggest that a cheap FDA-approved drug already on the market could slow movement of glioblastoma cells.

"The biggest challenge in is the migration of . We can't control it," says study leader Alfredo Quinones-Hinojosa, M.D., an associate professor of neurosurgery and oncology at the Johns Hopkins University School of Medicine. "If we could catch these cells before they take off into other parts of the brain, we could make more manageable, and improve life expectancy and quality of life. This discovery gives us hope and brings us closer to a cure."

Glioblastoma, which is diagnosed in roughly 10,000 Americans each year, is so aggressive that the average life expectancy after diagnosis is just 15 months, Quinones says. The cancer spreads to healthy so quickly and completely that surgical cures are virtually impossible and advances in radiation and chemotherapy have been slow in coming.

In a search for ways to prevent or limit the spread, and stop lethal recurrence of the tumor, the researchers focused on a protein called NKCC1 in human in the laboratory and also in tumor cells injected into mice. NKCC1 exchanges sodium, potassium and , together with water and regulates cell volume.

Quinones-Hinojosa and his team found that cells with more NKCC1 appear to move farther because the protein made it easier for tumor cells to propel themselves through tissue. The more of this protein in the tumor cell, they discovered, the faster the glioblastoma cells were able to travel. When NKCC1 was absent, they noted that the cells had larger , which allow the cells to attach to surrounding cells. Larger adhesions, he says, appear to keep the cells more anchored in place, while smaller ones made cells more mobile and allowed for more migration.

In their experiments, the researchers blocked the protein and were able to slow the migration of the tumor cells. Less mobility, Quinones-Hinojosa says, means less invasion of surrounding tissue.

To block the channel, the team used the diuretic bumetanide, a simple water pill routinely used to reduce swelling and fluid retention. Added to either tumor cells in the laboratory, or to human tumor cells in mice, the drug blocked the NKCC transporter and slowed the pace of cell movement. If the cells were made less invasive, Quinones notes, tumors would be easier to surgically remove.

The researchers were also able to correlate human tumor grade with levels of NKCC1. The less aggressive the tumor, they discovered, the smaller the amount of the protein present in the cells. This suggests that NKCC1 may not only contribute to the increased invasiveness of tumors, but also serve as a potential marker for diagnosis.

Explore further: How brain tumors invade

More information: PLoS Biol 10(5): e1001320. doi:10.1371/journal.pbio.1001320

Related Stories

How brain tumors invade

December 12, 2011
Scientists have pinpointed a protein that allows brains tumors to invade healthy brain tissue, according to work published this week in the Journal of Experimental Medicine.

Recommended for you

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

Computer program finds new uses for old drugs

November 16, 2017
Researchers at the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine have developed a computer program to find new indications for old drugs. The computer program, called DrugPredict, ...

Pharmacoscopy improves therapy for relapsed blood cancer in a first clinical trial

November 16, 2017
Researchers at CeMM and the Medical University of Vienna presented a preliminary report in The Lancet Hematology on the clinical impact of an integrated ex vivo approach called pharmacoscopy. The procedures measure single-cell ...

Wider sampling of tumor tissues may guide drug choice, improve outcomes

November 15, 2017
A new study focused on describing genetic variations within a primary tumor, differences between the primary and a metastatic branch of that tumor, and additional diversity found in tumor DNA in the blood stream could help ...

A new strategy for prevention of liver cancer development

November 14, 2017
Primary liver cancer is now the second leading cause of cancer-related death worldwide, and its incidences and mortality are increasing rapidly in the United Stated. In late stages of the malignancy, there are no effective ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.