Abnormal gene product associated with prostate cancer generated by unusual mechanism

June 19, 2012, American Association for Cancer Research

Researchers have identified a potential new pathway in prostate cancer cells by which cancer-driving gene products can be generated, according to a study published in Cancer Discovery, a journal of the American Association for Cancer Research.

"Our work shows that cancers have many more tricks than we thought to generate potential cancer-driving genes or ," said Hui Li, Ph.D., assistant professor of pathology at the University of Virginia in Charlottesville, and a recipient of an Grant from Stand Up To Cancer (SU2C). The AACR is the scientific partner of SU2C.

is a common characteristic of human cancers. In many cases, the protein products of these gene fusions, which are generated via an RNA intermediate, have a key role in the genesis of the cancer. A well-characterized example of this is the protein that drives , BCR-ABL, which is generated via RNA intermediates from a formed by chromosomal translocation — an event involving exchange of genomic DNA between two distinct chromosomes.

"For many years, chromosomal translocation was considered the sole way in which single RNAs consisting of copies of parts of two genes, so-called fusion RNAs, could be generated," said Li. "We have shown that fusion RNAs can be generated without changes to DNA by a new mechanism that we are calling cis-SAGe [cis-splicing of adjacent genes]." Recently, a fusion RNA formed from parts of the SLC45A3 and ELK4 genes was identified in in the absence of any DNA alterations. Li and his colleagues confirmed in two prostate cancer cells lines that the SLC45A3-ELK4 fusion RNA could be detected even though there was no evidence of genomic DNA rearrangement.

Detailed molecular analysis of the prostate cancer cell lines indicated that the SLC45A3-ELK4 fusion RNA was generated by cis-SAGe. SLC45A3 and ELK4 are neighboring genes, and cis-SAGe occurred when an RNA that crossed the boundary between the two genes was formed.

The protein CCCTC-binding factor normally acts to insulate SLC45A3 and ELK4 from each other. Li and his colleagues found that levels of this protein at the gene boundary inversely correlated with the amount of SLC45A3-ELK4 fusion RNA generated, providing molecular insight into how the quantity of this fusion RNA could be regulated.

A functional role for the SLC45A3-ELK4 fusion RNA in prostate cancer was suggested by two observations. First, it promoted the growth of the two prostate cancer cell lines in culture. Second, its levels in human prostate samples correlated with prostate cancer disease progression — normal prostate tissue expressed the lowest levels and prostate cancer specimens from men with metastatic disease expressed the highest levels.

"These data are not sufficient to say that the SLC45A3-ELK4 fusion RNA has a causal role in ," said Li. "But they are highly suggestive, and I am very excited that this high-risk project, which I would not have been able to pursue without the grant from Stand Up To Cancer, has uncovered what seems to be a new way in which cancer can be driven."

Explore further: Gene fusion in lung cancer afflicting never-smokers may be target for therapy

Related Stories

Gene fusion in lung cancer afflicting never-smokers may be target for therapy

December 22, 2011
Smoking is a well-known risk factor for lung cancer, but nearly 25% of all lung cancer patients have never smoked. In a study published online today in Genome Research, researchers have identified a previously unknown gene ...

Half of prostate cancers could potentially benefit from new type of cancer drugs, study finds

May 18, 2011
About half of prostate cancers have a genetic anomaly that appears to make tumor cells responsive to a new class of cancer-fighting drugs, a new study from the University of Michigan Comprehensive Cancer Center finds.

Scientists identify new mechanism of prostate cancer cell metabolism

March 22, 2012
Cancer cell metabolism may present a new target for therapy as scientists have uncovered a possible gene that leads to greater growth of prostate cancer cells.

Recommended for you

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.