All things big and small: The brain's discerning taste for size

June 20, 2012

The human brain can recognize thousands of different objects, but neuroscientists have long grappled with how the brain organizes object representation; in other words, how the brain perceives and identifies different objects. Now researchers at the MIT Computer Science and Artificial Intelligence Lab (CSAIL) and the MIT Department of Brain and Cognitive Sciences have discovered that the brain organizes objects based on their physical size, with a specific region of the brain reserved for recognizing large objects and another reserved for small objects. Their findings, to be published in the June 21 issue of Neuron, could have major implications for fields like robotics, and could lead to a greater understanding of how the brain organizes and maps information.

"Prior to this study, nobody had looked at whether the size of an object was an important factor in the brain's ability to recognize it," said Aude Oliva, an associate professor in the MIT Department of and Cognitive Sciences and senior author of the study.

"It's almost obvious that all objects in the world have a physical size, but the importance of this factor is surprisingly easy to miss when you study objects by looking at pictures of them on a ," said Dr. Talia Konkle, lead author of the paper. "We pick up small things with our fingers, we use big objects to support our bodies. How we interact with objects in the world is deeply and intrinsically tied to their real-world size, and this matters for how our brain's visual system organizes object information."

As part of their study, Konkle and Oliva took 3D scans of during experiments in which participants were asked to look at images of big and small objects or visualize items of differing size. By evaluating the scans, the researchers found that there are distinct regions of the brain that respond to big objects (for example, a chair or a table), and small objects (for example, a paperclip or a strawberry).

By looking at the arrangement of the responses, they found a systematic organization of big to small object responses across the brain's cerebral cortex. Large objects, they learned, are processed in the parahippocampal region of the brain, an area located by the hippocampus, which is also responsible for navigating through spaces and for processing the location of different places, like the beach or a building. Small objects are handled in the inferior temporal region of the brain, near regions that are active when the brain has to manipulate tools like a hammer or a screwdriver.

The work could have major implications for the field of robotics, in particular in developing techniques for how robots deal with different objects, from grasping a pen to sitting in a chair.

"Our findings shed light on the geography of the , and could provide insight into developing better machine interfaces for robots," said Oliva.

Many computer vision techniques currently focus on identifying what an object is without much guidance about the size of the object, which could be useful in recognition. "Paying attention to the physical size of objects may dramatically constrain the number of objects a has to consider when trying to identify what it is seeing," said Oliva.

The study's findings are also important for understanding how the organization of the brain may have evolved. The work of Konkle and Oliva suggests that the human visual system's method for organizing thousands of objects may also be tied to human interactions with the world. "If experience in the world has shaped our brain organization over time, and our behavior depends on how big objects are, it makes sense that the brain may have established different processing channels for different actions, and at the center of these may be size," said Konkle.

Oliva, a cognitive neuroscientist by training, has focused much of her research on how the brain tackles scene and recognition, as well as visual memory. Her ultimate goal is to gain a better understanding of the brain's visual processes, paving the way for the development of machines and interfaces that can see and understand the visual world like humans do.

"Ultimately, we want to focus on how active observers move in the natural world. We think this not only matters for large-scale brain organization of the visual system, but it also matters for making machines that can see like us," said Konkle and Oliva.

Explore further: Neuroscientists uncover neural mechanisms of object recognition

More information: "A Real-World Size Organization of Object Responses in the Occipitotemporal Cortex," Neuron (2012).

Related Stories

Neuroscientists uncover neural mechanisms of object recognition

July 13, 2011
Certain brain injuries can cause people to lose the ability to visually recognize objects — for example, confusing a harmonica for a cash register.

Researchers utilize neuroimaging to show how brain uses objects to recognize scenes

September 13, 2011
Research conducted by Boston College neuroscientist Sean MacEvoy and colleague Russell Epstein of the University of Pennsylvania finds evidence of a new way of considering how the brain processes and recognizes a person's ...

New research advances understanding of size perception

March 12, 2012
Neuroscientists from Western University have taken the all-important first step towards understanding the neural basis of size constancy or the ability to see an object as having the same size despite the fact that its image ...

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.