The balancing act to regulate the brain machinery

June 8, 2012, CORDIS
The balancing act to regulate the brain machinery
Credit: Thinkstock

Molecular imbalance lies at the root of many psychiatric disorders. Current EU-funded research has discovered a major RNA molecular player in neurogenesis and has characterised its action and targets in the zebrafish embryo.

Neural circuits are constantly in the process of modification according to experience and changes in the environment, a phenomenon known as plasticity. Classical Hebbian plasticity is crucial for encoding information whereas homeostatic plasticity stabilises in the face of changes that disturb excitability.

Homeostatic plasticity plays a big role in activity-dependent development of . Interestingly, this type of homeostasis is frequently distorted in such as schizophrenia and autism.

Unlike the molecular basis of Hebbian homeostasis, the biochemistry behind homeostatic plasticity is relatively unknown. The 'MicroRNAs and control' (Neuromir) project set about investigating in the zebrafish embryo to unravel the action of one class of gene regulator in particular – microRNAs.

The microRNA machinery is potentially very powerful in cell regulation. It influences many development processes and each microRNA molecule can regulate hundreds of target genes.

Numerous microRNAs are expressed in the development of the vertebrate central nervous system (CNS). Results from the in vivo study of the zebrafish revealed that miR-9 plays an important role in balancing the production of neurons during development of the embryo.

Neuromir researchers have successfully identified the molecular targets of miR-9. Future research may exploit this knowledge base by assessing their importance in disease and using their molecular format for drug therapy design.

Related Stories

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.