Brain scans detect early signs of autism

June 27, 2012

A new study shows significant differences in brain development in high-risk infants who develop autism starting as early as age 6 months. The findings published in the American Journal of Psychiatry reveal that this abnormal brain development may be detected before the appearance of autism symptoms in an infant's first year of life. Autism is typically diagnosed around the age of 2 or 3.

The study offers new clues for early , which is key, as research suggests that the symptoms of autism - problems with communication, and behavior - can improve with . "For the first time, we have an encouraging finding that enables the possibility of developing autism risk biomarkers prior to the appearance of symptoms, and in advance of our current ability to diagnose autism," says co-investigator Dr. Alan Evans at the Montreal Neurological Institute and Hospital – the Neuro, McGill University, which is the Data Coordinating Centre for the study.

"Infancy is a time when the brain is being organized and connections are developing rapidly," says Dr. Evans. "Our international research team was able to detect differences in the wiring by six months of age in those children who went on to develop autism. The difference between high-risk that developed autism and those that did not was specifically in tract development – fibre pathways that connect brain regions." The study followed 92 infants from 6 months to age 2. All were considered at high-risk for autism, as they had older siblings with the developmental disorder. Each infant had a special type of MRI scan, known as diffusion tensor imaging, at 6 months and a behavioral assessment at 24 months. The majority also had additional scans at either or both 12 and 24 months.

At 24 months, 30% of infants in the study were diagnosed with autism. White matter tract development for 12 of the 15 tracts examined differed significantly between the infants that developed autism and those who did not. Researchers evaluated fractional anisotropy (FA), a measure of white matter organization based on the movement of water through tissue. Differences in FA values were greatest at 6 and 24 months. Early in the study, infants who developed autism showed elevated FA values along these tracts, which decreased over time, so that by 24 months autistic infants had lower FA values than infants without autism.

The study characterizes the dynamic age-related brain and behavior changes underlying – vital for developing tools to aid autistic children and their families. This is the latest finding from the on-going Infant Brain Imaging Study (IBIS), which is funded by the National Institutes of Health (NIH) and brings together the expertise of a network of researchers from institutes across North America. The IBIS study is headquartered at the University of North Carolina, and The Neuro is the Data Coordinating Centre where all IBIS data is centralized.

Explore further: Brain-imaging differences evident at 6 months in infants who develop autism

Related Stories

Brain-imaging differences evident at 6 months in infants who develop autism

February 17, 2012
A new study led by the University of North Carolina at Chapel Hill found significant differences in brain development starting at age 6 months in high-risk infants who later develop autism, compared to high-risk infants who ...

Variation in brain development seen in infants with autism

February 22, 2012
Patterns of brain development in the first two years of life are distinct in children who are later diagnosed with autism spectrum disorders (ASDs), according to researchers in a network funded by the National Institutes ...

Autism researchers make exciting strides

December 12, 2011
Teaching young children with autism to imitate others may improve a broader range of social skills, according to a new study by a Michigan State University scholar.

In the brain, an earlier sign of autism

January 26, 2012
In their first year of life, babies who will go on to develop autism already show different brain responses when someone looks at or away from them. Although the researchers are careful to say that the study, reported online ...

Risk of autism among younger siblings of a child with autism much greater than previously reported

August 15, 2011
Autism Speaks, the world's largest autism science and advocacy organization, joined in announcing significant findings from the largest known study of younger siblings of children who had a verified diagnosis of autism spectrum ...

Recommended for you

Signaling pathway may be key to why autism is more common in boys

October 17, 2017
Researchers aiming to understand why autism spectrum disorders (ASD) are more common in boys have discovered differences in a brain signaling pathway involved in reward learning and motivation that make male mice more vulnerable ...

Whole genome sequencing identifies new genetic signature for autism

October 12, 2017
Autism has genetic roots, but most cases can't be explained by current genetic tests.

Mum's immune response could trigger social deficits for kids with autism

October 10, 2017
The retrospective cohort study of 220 Australian children, conducted between 2011-2014, indicates that a "an immune-mediated subtype" of autism driven by the body's inflammatory and immunological systems may be pivotal, according ...

Largest study to date reveals gender-specific risk of autism occurrence among siblings

September 25, 2017
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Predicting atypical development in infants at high risk for autism?

September 12, 2017
New research from the Sackler Institute for Developmental Psychobiology at Columbia University Medical Center (CUMC) identifies a potential biomarker that predicts atypical development in 1- to 2-month-old infants at high ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.