Researchers make progress on early detection of resistance to colorectal cancer drugs

June 25, 2012
Researchers make progress on early detection of resistance to colorectal cancer drugs

Mutations in a gene called KRAS are causally associated with acquired resistance to targeted therapies for colorectal cancers (CRC), according to new findings from EU-funded researchers from Italy and their research colleagues in the United States.

Writing in the journal Nature, the team explain that patients often develop resistance to colorectal that target epidermal (EGFRs). The team show in cell-line models that KRAS mutations can cause resistance to an anti-EGFR therapy called . These mutations can either be acquired during treatment or may have pre-existed in a small fraction of tumour cells before treatment.

Two of the Italian study authors, Professor Alberto Bardelli from the Institute for Cancer Research and Treatment in Turin and Salvatore Siena from the Falck Division of at the Niguarda Ca' Granda Hospital in Milan, were supported by the EU-funded COLTHERES ('Modelling and predicting sensitivity to targeted therapies in colorectal cancers') project which received EUR 5,999,300 of funding under the 'Health' Theme of the EU's Seventh Framework Programme (FP7).

Professor Bardelli comments: 'Emergence of secondary resistance to anti EGFR therapies (disease progression) in is presently established by radiological evaluation. In the paper we describe for the first time that KRAS are a mechanism of acquired resistance to anti EGFR therapies in CRCs and occur in approximately 50% of patients.'

The findings in this latest study come at the same time as a second team of researchers publish results demonstrating that resistance mutations in KRAS and other genes are highly likely to be present in a subpopulation of tumour cells before treatment. In this complementary study, also published in Nature, researchers from Austria, China and the United States show that these mutations can be detected months before there is clinical evidence of treatment failure, which could provide a signal to start alternative treatments.

These researchers used mathematical modelling to provide evidence that KRAS mutations pre-exist in before treatment with the anti-EGFR treatment panitumumab. This may explain why clinical recurrence usually occurs within the same timescale, about 5 to 7 months after treatment began.

Both studies show that DNA from these mutations can be detected in liquid biopsies several months before radiographic evidence of disease progression is observable. The hope now is that scientists will be able to build on these results by using combination therapy to anticipate and counter resistance before patients relapse.

Professor Bardelli explains that both study groups demonstrate that these mutations can be detected in plasma using an approach called 'liquid biopsy'.

He adds: 'This means that it is now possible to monitor the evolution of the tumour in response to therapy using a blood draw to detect early mutations that drive acquired resistance. The concept of liquid biopsy is an important step forward in the field. It was already known that the measurement of circulating tumour free DNA in the blood of patients could be used to monitor tumour burden. Our work shows that molecular determinants of acquired resistance can be detected several months before the clinical manifestation of relapse.'

Professor Bardelli also notes that it is important to clarify that what they have discovered is 'not a novel way to detect colon cancer' rather they have found a strategy to non-invasively detect early relapse from therapy in colorectal cancer patients.

As well as Italy, COLTHERES, which started in 2011 and runs until 2014, supports researchers from Belgium, the Netherlands, Spain, Switzerland and the United Kingdom, and its central aim is to help develop knowledge in the 'personalised' approach to cancer treatment where the 'right' combination of drugs is administered to the 'right' patients, based on a detailed understanding of their genetic background.

Some of the issues the COLTHERES project addresses are molecular profiling of colon cancer patient samples using multiple omics-based technologies for co-segregating lesions that could impart resistance to existing and emerging targeted therapies, and building and screening predictive in vitro models based on this data to enable the rapid and empirical determination of drug resistance biomarkers.

For more information, please visit:

Explore further: Advanced cancers destined to recur after treatment with single drugs that 'target' tumor cells: study

More information: Misale, S., et al. Nature, 2012. doi:10.1038/nature11156

Related Stories

Advanced cancers destined to recur after treatment with single drugs that 'target' tumor cells: study

June 13, 2012
Targeted cancer cell therapies using man-made proteins dramatically shrink many tumors in the first few months of treatment, but new research from Johns Hopkins scientists finds why the cells all too often become resistant, ...

KRAS gene mutation and amplification status affects sensitivity to antifolate therapy

April 4, 2012
Testing patients with non-small cell lung cancer for both mutations and amplifications of the KRAS gene prior to therapy may help to predict response to treatment with antifolates, according to the updated results of a preclinical ...

Study identifies a cause of resistance to colon cancer treatment

January 22, 2012
Doctors and researchers of Hospital del Mar and its research institute, the IMIM, have lead a study describing a new pharmacological resistance to cancer. This new mechanism is a mutation in an oncogene called EGFR (epidermal ...

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.