Study: The epigenome of newborns and centenarians is different

June 11, 2012, IDIBELL-Bellvitge Biomedical Research Institute

What happens in our cells after one hundred years? What is the difference at the molecular level between a newborn and a centenary? Is it a gradual or a sudden change? Is it possible to reverse the aging process? What are the molecular keys to longevity? These central questions in biology, physiology and human medicine have been the focus of study by researchers for decades.

Today, the international journal (PNAS) publishes an international collaborative research led by Manel Esteller, director of the Epigenetics and Cancer Biology Program at the Bellvitge Biomedical Research Institute (IDIBELL), professor of Genetics at the University of Barcelona and ICREA researcher, which provides a vital clue in this field: the epigenome of newborns and is different.

While the genome of every cell in the human body, regardless of their appearance and function, is identical, that regulate it, known as epigenetic marks, are specific to each human tissue and every organ. This means that all our components have the same alphabet (genome), but the spelling (epigenome) is different in every part of our anatomy. The surprising result of the work led by Dr. Esteller is that the epigenome varies depending on the age of the person, even for the same tissue or organ.

In the study published in PNAS, from of a newborn, a man of middle age and a person of 103 years have been fully sequenced. The results show that the centenary presents a distorted epigenome that has lost many switches (methyl chemical group), put in charge of inappropriate and, instead, turn off the switch of some protective genes.

"Extending the results to a large group of neonates, individuals at the midpoint and nonagenarians or centenarians we realized that this is an ongoing process in which each passing day goes by twisting the epigenome" explains the researcher. However, Dr. Esteller noted that "epigenetic lesions, unlike genetic ones, are reversible and therefore modifying the patterns of DNA methylation by dietary changes or use of drugs may induce an increase in lifetime."

Explore further: Researchers complete the first epigenome in Europe

More information: Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, AA Pucaf Sayols S, Pujana MA, Serra-Musach J, Iglesias-Plata I, Formiga F, Fernandez AF, Fraga MF, Heath S, Valencia A, Gut IG, Wang J, Esteller M. The Distinct DNA Methylomes of Newborns and centenarians. Proc Natl Acad Sci, 2012.

Related Stories

Researchers complete the first epigenome in Europe

May 30, 2012
A study led by Manel Esteller, director of the Epigenetics and Cancer Biology Program at the Bellvitge Biomedical Research Institute (IDIBELL), professor of genetics at the University of Barcelona and ICREA researcher, has ...

Researchers characterize epigenetic fingerprint of 1,628 people

June 2, 2011
Until a decade, it was believed that differences between people were due solely to the existence of genetic changes, which are alterations in the sequence of our genes. The discoveries made during these last ten years show ...

Why cancer cells change their appearance?

September 2, 2011
Like snakes, tumour cells shed their skin. Cancer is not a static disease but during its development the disease accumulates changes to evade natural defences adapting to new environmental circumstances, protecting against ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.