Study: The epigenome of newborns and centenarians is different

June 11, 2012

What happens in our cells after one hundred years? What is the difference at the molecular level between a newborn and a centenary? Is it a gradual or a sudden change? Is it possible to reverse the aging process? What are the molecular keys to longevity? These central questions in biology, physiology and human medicine have been the focus of study by researchers for decades.

Today, the international journal (PNAS) publishes an international collaborative research led by Manel Esteller, director of the Epigenetics and Cancer Biology Program at the Bellvitge Biomedical Research Institute (IDIBELL), professor of Genetics at the University of Barcelona and ICREA researcher, which provides a vital clue in this field: the epigenome of newborns and is different.

While the genome of every cell in the human body, regardless of their appearance and function, is identical, that regulate it, known as epigenetic marks, are specific to each human tissue and every organ. This means that all our components have the same alphabet (genome), but the spelling (epigenome) is different in every part of our anatomy. The surprising result of the work led by Dr. Esteller is that the epigenome varies depending on the age of the person, even for the same tissue or organ.

In the study published in PNAS, from of a newborn, a man of middle age and a person of 103 years have been fully sequenced. The results show that the centenary presents a distorted epigenome that has lost many switches (methyl chemical group), put in charge of inappropriate and, instead, turn off the switch of some protective genes.

"Extending the results to a large group of neonates, individuals at the midpoint and nonagenarians or centenarians we realized that this is an ongoing process in which each passing day goes by twisting the epigenome" explains the researcher. However, Dr. Esteller noted that "epigenetic lesions, unlike genetic ones, are reversible and therefore modifying the patterns of DNA methylation by dietary changes or use of drugs may induce an increase in lifetime."

Explore further: Researchers complete the first epigenome in Europe

More information: Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, AA Pucaf Sayols S, Pujana MA, Serra-Musach J, Iglesias-Plata I, Formiga F, Fernandez AF, Fraga MF, Heath S, Valencia A, Gut IG, Wang J, Esteller M. The Distinct DNA Methylomes of Newborns and centenarians. Proc Natl Acad Sci, 2012.

Related Stories

Researchers complete the first epigenome in Europe

May 30, 2012
A study led by Manel Esteller, director of the Epigenetics and Cancer Biology Program at the Bellvitge Biomedical Research Institute (IDIBELL), professor of genetics at the University of Barcelona and ICREA researcher, has ...

Researchers characterize epigenetic fingerprint of 1,628 people

June 2, 2011
Until a decade, it was believed that differences between people were due solely to the existence of genetic changes, which are alterations in the sequence of our genes. The discoveries made during these last ten years show ...

Why cancer cells change their appearance?

September 2, 2011
Like snakes, tumour cells shed their skin. Cancer is not a static disease but during its development the disease accumulates changes to evade natural defences adapting to new environmental circumstances, protecting against ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.