Three types of fetal cells can migrate into maternal organs during pregnancy

June 6, 2012, Society for the Study of Reproduction

A pregnant woman's blood stream contains not only her own cells, but a small number of her child's, as well, and some of them remain in her internal organs long after the baby is born. Understanding the origin and identity of these cells is vital to understanding their potential effects on a mother's long-term health. For example, fetal cells have been found at tumor sites in mothers, but it is unknown whether the cells are helping to destroy the tumor or to speed its growth.

Three types of have now been identified in the lungs of late-term pregnant mice by a team led by Dr. Diana Bianchi of Tufts Medical Center. The research, published 6 June 2012 in 's Papers-in-Press, used publicly available databases to extract important genetic information from as few as 80 fetal cells. A combination of two different analytical techniques to characterize the rare fetal cells revealed a mixed population of trophoblasts (placental cells that provide nutrients to the fetus), mesenchymal stem cells (cells that later develop into fat, cartilage, or bone cells), and .

Researchers suspect that fetal cells in a mother's blood stream help her immune system tolerate and not attack the fetus. The detection of trophoblasts and immune cells in the maternal lung should aid future studies on this subject, as well as research into pregnancy-related complications like preeclampsia. The presence of fetal corresponds with previous studies that reported fetal and placental cells differentiating to repair injured maternal organs in both mice and humans.

Using this team's techniques of , researchers should now be better able to identify the types of cells present in maternal organs and in doing so determine their potential short- and long-term effects on a mother's internal systems.

Explore further: Fetal stem cells from placenta may help maternal heart recover from injury

More information: Pritchard S, Wick HC, Slonim DK, Johnson KL, Bianchi DW. Comprehensive analysis of genes expressed by rare microchimeric fetal cells in maternal lung. Biol Reprod 2012; (in press). Published online ahead of print 6 June 2012; DOI 10.1095/biolreprod.112.101147

Related Stories

Fetal stem cells from placenta may help maternal heart recover from injury

November 14, 2011
Researchers from Mount Sinai School of Medicine have discovered the therapeutic benefit of fetal stem cells in helping the maternal heart recover after heart attack or other injury. The research, which marks a significant ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.