Researchers identify new group of proteins in the brains of Alzheimer's patients

June 13, 2012

Researchers from Boston University School of Medicine (BUSM) have identified a novel group of proteins that accumulate in the brains of patients with Alzheimer's disease. These findings, which appear online in the Journal of Neuroscience, may open up novel approaches to diagnose and stage the progression likelihood of the disease in Alzheimer patients.

Alzheimer's disease is presumed to be caused by the accumulation of β-amyloid, which then induces aggregation of a neuronal , called tau, and neurodegeneration ensues. The diagnosis of focuses on β-amyloid and , with much attention focusing on radiolabeled markers that bind to β-amyloid (such as the compound PiB). However, imaging β-amyloid is problematic because many cognitively normal elderly have large amounts of β-amyloid in their , and appear as "positives" in the imaging tests.

Therapeutic approaches for Alzheimer's disease generally have focused on β-amyloid because the process of producing a neurofibrillary tangle composed on tau protein has been poorly understood. Hence, few tau therapies have been developed. According to the researchers, this study makes important advances on both of these fronts.

The BUSM researchers identified a new group of proteins, termed RNA-binding proteins, which accumulate in the brains of patients with Alzheimer's disease, and are present at much lower levels in subjects who are cognitively intact. The group found two different proteins, both of which show striking patterns of accumulation. "Proteins such as TIA-1 and TTP, accumulate in neurons that accumulate tau protein, and co-localize with neurofibrillary tangles. These proteins also bind to tau, and so might participate in the disease process," explained senior author Benjamin Wolozin, MD, PhD, a professor in the departments of pharmacology and neurology at BUSM. "A different RNA binding protein, G3BP, accumulates primarily in neurons that do not accumulate pathological tau protein. This observation is striking because it shows that neurons lacking tau aggregates (and neurofibrillary tangles) are also affected by the disease process," he added.

The researchers believe this work opens up novel approaches to diagnose and stage the of progression by quantifying the levels of these RNA-binding protein biomarkers that accumulate in the brains of Alzheimer patients.

Wolozin's group also pursued the observation that some of the RNA binding proteins bind to tau protein, and tested whether one of these proteins, TIA-1, might contribute to the disease process. Previously, scientists have demonstrated that TIA-1 spontaneously aggregates in response to stress as a normal part of the stress response. Wolozin and his colleagues hypothesize that since TIA-1 binds tau, it might stimulate tau aggregation during the stress response. They introduced TIA-1 into neurons with tau protein, and subjected the neurons to stress. Consistent with their hypothesis, tau spontaneously aggregated in the presence of TIA-1, but not in the absence. Thus, the group has potentially identified an entirely novel mechanism to induce tau aggregates de novo. In future work, the group hopes to use this novel finding to understand how neurofibrillary tangles for in Alzheimer's disease and to screen for novel compounds that might inhibit the progression of Alzheimer's disease.

Explore further: Untangling the mysteries of Alzheimer's

Related Stories

Untangling the mysteries of Alzheimer's

February 2, 2012
One of the most distinctive signs of the development of Alzheimer's disease is a change in the behavior of a protein that neuroscientists call tau. In normal brains, tau is present in individual units essential to neuron ...

Study examines immunotherapy and cerebrospinal fluid biomarkers in patients with Alzheimer's disease

April 2, 2012
Immunotherapy with the antibody bapineuzumab in patients with mild to moderate Alzheimer disease resulted in decreases in a cerebrospinal fluid biomarker, which may indicate downstream effects on the degenerative process, ...

Antiviral drugs may slow Alzheimer's progression

October 17, 2011
Antiviral drugs used to target the herpes virus could be effective at slowing the progression of Alzheimer's disease (AD), a new study shows.

Chemical engineers help decipher mystery of neurofibrillary tangle formation in Alzheimer's brains

November 2, 2011
Neurofibrillary tangles – odd, twisted clumps of protein found within nerve cells – are a pathological hallmark of Alzheimer's disease. The tangles, which were first identified in the early 1900s by German psychiatrist ...

Recommended for you

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Neuroscientists show deep brain waves occur more often during navigation and memory formation

December 12, 2017
UCLA neuroscientists are the first to show that rhythmic waves in the brain called theta oscillations happen more often when someone is navigating an unfamiliar environment, and that the more quickly a person moves, the more ...

How Zika virus induces congenital microcephaly

December 12, 2017
Epidemiological studies show that in utero fetal infection with the Zika virus (ZIKV) may lead to microcephaly, an irreversible congenital malformation of the brain characterized by an incomplete development of the cerebral ...

Presurgical imaging may predict whether epilepsy surgery will work

December 11, 2017
Surgery to remove a part of the brain to give relief to patients with epilepsy doesn't always result in complete seizure relief, but statisticians at Rice University have developed a method for integrating neuroimaging scans ...

Selecting sounds: How the brain knows what to listen to

December 11, 2017
How is it that we are able—without any noticeable effort—to listen to a friend talk in a crowded café or follow the melody of a violin within an orchestra?

Updated brain cell map connects various brain diseases to specific cell types

December 11, 2017
Researchers have developed new single-cell sequencing methods that could be used to map the cell origins of various brain disorders, including Alzheimer's, Parkinson's, schizophrenia and bipolar disorder.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.