Professor's fly question may hold answer to mosquito-borne fever

June 6, 2012, UC Davis
Michael Turelli is a theoretical biologist whose basic research has been applied to help stop the spread of dengue fever. Credit: Phil DeVries

(Medical Xpress) -- The office of Michael Turelli, distinguished professor in the UC Davis Department of Evolution and Ecology, is lined with books written by the world’s preeminent evolutionary geneticists. Most are Turelli’s friends and colleagues. Picking up and flipping the pages of one after another, he tells the story of evolutionary genetics and his 35-year career at UC Davis.

“For me, the history of science is a history of personal interactions,” Turelli said. “I’ve gotten where I am by meeting people. From the whole field of population genetics, I’m at most 1 degree removed.”

His combination of smart connections, rampant curiosity and hard work — including research that could help stop the spread of dengue fever — has not gone unnoticed by his campus colleagues. The Davis Division of the Academic Senate has selected Turelli for the 2012 Faculty Research Lecture Award.

The award is the senate’s highest accolade. It recognizes outstanding scholarly research and comes with a $1,000 cash prize. The recipient delivers the annual Faculty Research Lecture. Turelli’s talk, “How good luck, great collaborators, pretty mathematics and a maternally inherited bacterium (Wolbachia) may stop the spread of dengue fever,” is scheduled for Wednesday, June 6, at 4:10 p.m. in 1322 Storer Hall on the UC Davis campus. It is free and open to the public.

“[Professor Turelli] is one of the few and highly valued theoreticians in biology whose work is aimed directly at understanding the natural world,” wrote UC Davis and professor David Begun in his nomination letter. “Given his extraordinary international stature, it seems only fitting that we honor him with the highest campus award recognizing his contributions.”

Making a difference

From an early age, Turelli knew that whatever he did in life, he wanted it to make a difference. When he realized, as an undergraduate mathematics student at UC Riverside in the 1970s, that some of his classmates were as good as or better than him at math, he decided to leave the field after getting his bachelor’s degree.

“It became clear I was not going to make a significant contribution in math,” Turelli said.

He began to think that the way to save the world was by applying math to biology, and he shifted his focus to mathematical ecology — “What? You’re trying to save endangered numbers?“ his uncle joked at the time — and to genetics, earning his doctorate in biomathematics at the University of Washington in 1977. That same year, he joined the UC Davis faculty.

“Davis has been profoundly supportive of me,” Turelli said. “I’ve had great collaborators and good luck in picking and solving problems.”

Turelli’s current work with an international research team introducing a bacterium into mosquitoes that transmit dengue fever could help solve an enormous global problem: “It seems quite probable it could stop the spread of dengue fever,” he said.

Curious by nature

In his lecture, Turelli will describe how, in the mid-1980s, he and Ary Hoffmann, now at the University of Melbourne, Australia, set out to understand how flies adapt in nature. They did an apples-to-oranges comparison: mating flies found on oranges in Southern California with flies found on apples in Northern California. When the males from Southern California were mated to the females from Northern California, all of the flies’ embryos died. However, no such death occurred when Northern males were mated to Southern females. The reason, they discovered, was the bacterial symbiont Wolbachia.

Continued research, in which Turelli has played a leading part, has found that Wolbachia can spread rapidly in nature and may be the key to stopping , a potentially fatal condition caused by a virus spread by the mosquito Aedes aegypti. More than 2.5 billion people — over 40 percent of the world’s population — are at risk from dengue. The illness is most prevalent in the tropics and subtropics, and is an increasing problem in northern Australia.

Wolbachia is transmitted by female mosquitoes to their offspring. Infected female mosquitoes produce slightly fewer eggs than uninfected females. But when an infected male mates with an uninfected female, none of her eggs hatch. So once the infection is common, uninfected females produce fewer and fewer offspring.

Turelli and others studying Wolbachia expect that as it spreads from mosquito generation to generation, the transmission of dengue should come to an end.

Turelli said he is looking forward to sharing the Wolbachia story during his public lecture.

“It’ s a great example of being curious, wanting to understand something in nature and discovering that this understanding has important practical applications,” he said.

Explore further: Novel control of Dengue fever

Related Stories

Novel control of Dengue fever

August 24, 2011
The spread of Dengue fever in northern Australia may be controlled by a bacterium that infects mosquitoes that harbor the virus, Australian and U.S. researchers report Aug. 25 in two papers published in the journal Nature.

New portable tool detects dengue infected mosquitoes in the field

May 21, 2012
(Medical Xpress) -- A new portable tool to detect dengue virus-infected mosquitoes will help reduce the likelihood of human infections around the world.

Recommended for you

Fresh approach to tuberculosis vaccine offers better protection

January 17, 2018
A unique platform that resulted in a promising HIV vaccine has also led to a new, highly effective vaccine against tuberculosis that is moving toward testing in humans.

Newly-discovered TB blood signal provides early warning for at-risk patients

January 17, 2018
Tuberculosis can be detected in people with HIV infection via a unique blood signal before symptoms appear, according to a new study by researchers from the Crick, Imperial College London and the University of Cape Town.

New study offers insights on genetic indicators of COPD risk

January 16, 2018
Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

Previous influenza virus exposures enhance susceptibility in another influenza pandemic

January 16, 2018
While past exposure to influenza A viruses often builds immunity to similar, and sometimes different, strains of the virus, Canadian researchers are calling for more attention to exceptions to that rule.

Don't hold your nose and close your mouth when you sneeze, doctors warn

January 15, 2018
Pinching your nose while clamping your mouth shut to contain a forceful sneeze isn't a good idea, warn doctors in the journal BMJ Case Reports.

New antifungal provides hope in fight against superbugs

January 12, 2018
Microscopic yeast have been wreaking havoc in hospitals around the world—creeping into catheters, ventilator tubes, and IV lines—and causing deadly invasive infection. One culprit species, Candida auris, is resistant ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 06, 2012
One might wonder whether this same principle could exist in man ?
Research has shown the metal iron to be closely involved in infection in that they have shown some bacteria require iron and other bacteria such as lactobaccilus do not. Could the fact some people have increased iron , disallow the colonisation of the good bacteria such as lactobacillus , BUT allow the colonisation of the WRONG iron requiring bacteria which do NOT deter disease ?

"Researchers isolate iron as probiotic blocker"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.