Study sheds new light on role of genetic mutations in colon cancer development

June 7, 2012

In exploring the genetics of mitochondria – the powerhouse of the cell – researchers at Fred Hutchinson Cancer Research Center have stumbled upon a finding that challenges previously held beliefs about the role of mutations in cancer development.

For the first time, researchers have found that the number of new mutations are significantly lower in cancers than in normal cells.

"This is completely opposite of what we see in nuclear DNA, which has an increased overall mutation burden in cancer," said cancer geneticist Jason Bielas, Ph.D., whose findings are published in the June 7 issue of PLoS Genetics.

Mutations are changes in the sequence of a cell's genome and can occur as a result of environmental exposure to viruses, radiation and certain chemicals, or due to spontaneous errors during cell division or DNA replication.

Mitochondria, which are primarily responsible for the cell's energy production, are semi-autonomous; similar to the nucleus, they have their own set of DNA, which encodes genes critical for the functioning of the cell. While the role of genomic instability has been well characterized in nuclear DNA, this is the first attempt to determine whether instability in mitochondrial DNA may play a similar role in cancer growth and metastasis.

"We were surprised to find that the frequency of new mutations in mitochondrial DNA from tumor cells is decreased compared to that of normal cells," said Bielas, an assistant member of the Public Health Sciences and Human Biology divisions at the Hutchinson Center. "By extension, this suggests, somewhat counterintuitively, that higher mitcochondrial mutation rates may actually serve as a barrier to , and drugs that focus directly on increasing mitochondrial DNA damage and mutation might swap cancer's immortality for accelerated aging and tumor-cell death."

For the study, the researchers used using an ultra-sensitive test to detect mutations in mitochondrial DNA from normal and cancerous colon tissue resected from 20 patients prior to chemotherapy.

Bielas and colleagues first set out to analyze mutation rates in mitochondrial DNA because they wanted to see if it could act as a surrogate for nuclear DNA as a cancer biomarker. "Cells contain a thousandfold more mitochondrial genetic material than nuclear DNA, so theoretically you'd need a thousand times less tissue to get the same genetic information to predict clinical outcomes such as how fast a tumor would progress or whether it would be resistant to therapy," Bielas said.

While mitochondrial DNA proved to be an unreliable stand-in for nuclear DNA as a cancer biomarker, it offers promise as a new drug target.

"If we could increase DNA damage and mutation within the mitochondrial genome, theoretically we could decrease cancer," Bielas said. "That's what we're testing now. This is a whole new hypothesis."

The way mitochondria maintain genetic stability in the face of cancer, Bielas suggests, may be because unlike normal cells, cancer cells do not need oxygen to survive. In fact, cancer cells decrease the process by which they get energy from the and rely instead on a process called glycolysis, which is a form of energy production in the absence of oxygen.

"We believe less damage occurs to mitochondrial DNA of cancer cells because they no longer need oxygen," he said. "If we could program a cancer cell to once again need oxygen, we expect it would die – with minimal side effects."

Bielas and colleagues are now testing this theory in the laboratory, seeing whether that are reprogrammed to utilize oxygen and/or are targeted for mitochondrial DNA damage respond better to certain therapeutic agents.

"This finding is a game-changer because it challenges previous notions about the role of mutations in cancer development," said Bielas, who is also an affiliate assistant professor of pathology at the University of Washington, where the ultra-sensitive mutation-detection technology, called Random Mutation Capture, was developed. The test is so sensitive that it can detect the mutational equivalent of one misprinted letter in a library of a thousand 1,000-page books.

"This work started with the idea that there would be a huge mutation burden in the mitochondrial DNA, but our findings were completely opposite of what we had expected. Hopefully our discovery will open up new avenues for treatment, early detection and monitoring treatment response of colon and other malignancies," he said.

Explore further: How mitochondrial DNA defects cause inherited deafness

More information: “Decreased Mitochondrial DNA Mutagenesis in Human Colorectal Cancer,” PLoS Genetics.

Related Stories

How mitochondrial DNA defects cause inherited deafness

February 17, 2012
(Medical Xpress) -- Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed cell death. ...

New 'Achilles' heel' in breast cancer: tumor cell mitochondria

December 1, 2011
Researchers at the Kimmel Cancer Center at Jefferson have identified cancer cell mitochondria as the unsuspecting powerhouse and "Achilles' heel" of tumor growth, opening up the door for new therapeutic targets in breast ...

Recommended for you

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

Genetic advance for male birth control

October 10, 2017
When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

Researchers uncover new congenital heart disease genes

October 9, 2017
Approximately one in every 100 babies is born with congenital heart disease (CHD), and CHD remains the leading cause of mortality from birth defects. Although advancements in surgery and care have improved rates of survival ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.