Study sheds new light on role of genetic mutations in colon cancer development

June 7, 2012

In exploring the genetics of mitochondria – the powerhouse of the cell – researchers at Fred Hutchinson Cancer Research Center have stumbled upon a finding that challenges previously held beliefs about the role of mutations in cancer development.

For the first time, researchers have found that the number of new mutations are significantly lower in cancers than in normal cells.

"This is completely opposite of what we see in nuclear DNA, which has an increased overall mutation burden in cancer," said cancer geneticist Jason Bielas, Ph.D., whose findings are published in the June 7 issue of PLoS Genetics.

Mutations are changes in the sequence of a cell's genome and can occur as a result of environmental exposure to viruses, radiation and certain chemicals, or due to spontaneous errors during cell division or DNA replication.

Mitochondria, which are primarily responsible for the cell's energy production, are semi-autonomous; similar to the nucleus, they have their own set of DNA, which encodes genes critical for the functioning of the cell. While the role of genomic instability has been well characterized in nuclear DNA, this is the first attempt to determine whether instability in mitochondrial DNA may play a similar role in cancer growth and metastasis.

"We were surprised to find that the frequency of new mutations in mitochondrial DNA from tumor cells is decreased compared to that of normal cells," said Bielas, an assistant member of the Public Health Sciences and Human Biology divisions at the Hutchinson Center. "By extension, this suggests, somewhat counterintuitively, that higher mitcochondrial mutation rates may actually serve as a barrier to , and drugs that focus directly on increasing mitochondrial DNA damage and mutation might swap cancer's immortality for accelerated aging and tumor-cell death."

For the study, the researchers used using an ultra-sensitive test to detect mutations in mitochondrial DNA from normal and cancerous colon tissue resected from 20 patients prior to chemotherapy.

Bielas and colleagues first set out to analyze mutation rates in mitochondrial DNA because they wanted to see if it could act as a surrogate for nuclear DNA as a cancer biomarker. "Cells contain a thousandfold more mitochondrial genetic material than nuclear DNA, so theoretically you'd need a thousand times less tissue to get the same genetic information to predict clinical outcomes such as how fast a tumor would progress or whether it would be resistant to therapy," Bielas said.

While mitochondrial DNA proved to be an unreliable stand-in for nuclear DNA as a cancer biomarker, it offers promise as a new drug target.

"If we could increase DNA damage and mutation within the mitochondrial genome, theoretically we could decrease cancer," Bielas said. "That's what we're testing now. This is a whole new hypothesis."

The way mitochondria maintain genetic stability in the face of cancer, Bielas suggests, may be because unlike normal cells, cancer cells do not need oxygen to survive. In fact, cancer cells decrease the process by which they get energy from the and rely instead on a process called glycolysis, which is a form of energy production in the absence of oxygen.

"We believe less damage occurs to mitochondrial DNA of cancer cells because they no longer need oxygen," he said. "If we could program a cancer cell to once again need oxygen, we expect it would die – with minimal side effects."

Bielas and colleagues are now testing this theory in the laboratory, seeing whether that are reprogrammed to utilize oxygen and/or are targeted for mitochondrial DNA damage respond better to certain therapeutic agents.

"This finding is a game-changer because it challenges previous notions about the role of mutations in cancer development," said Bielas, who is also an affiliate assistant professor of pathology at the University of Washington, where the ultra-sensitive mutation-detection technology, called Random Mutation Capture, was developed. The test is so sensitive that it can detect the mutational equivalent of one misprinted letter in a library of a thousand 1,000-page books.

"This work started with the idea that there would be a huge mutation burden in the mitochondrial DNA, but our findings were completely opposite of what we had expected. Hopefully our discovery will open up new avenues for treatment, early detection and monitoring treatment response of colon and other malignancies," he said.

Explore further: How mitochondrial DNA defects cause inherited deafness

More information: “Decreased Mitochondrial DNA Mutagenesis in Human Colorectal Cancer,” PLoS Genetics.

Related Stories

How mitochondrial DNA defects cause inherited deafness

February 17, 2012
(Medical Xpress) -- Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed cell death. ...

New 'Achilles' heel' in breast cancer: tumor cell mitochondria

December 1, 2011
Researchers at the Kimmel Cancer Center at Jefferson have identified cancer cell mitochondria as the unsuspecting powerhouse and "Achilles' heel" of tumor growth, opening up the door for new therapeutic targets in breast ...

Recommended for you

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.